A Remark on Deformations of Hurwitz Frobenius Manifolds

被引:0
|
作者
Alexandr Buryak
Sergey Shadrin
机构
[1] University of Amsterdam,Department of Mathematics
[2] Moscow State University,Department of Mathematics
[3] Institute of System Research,Department of Mathematics
来源
关键词
37K10 (53D45, 37K30); Frobenius manifold; Hurwitz space; Darboux–Egoroff equations; multi-KP hierarchy; deformations;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we use the formalism of multi-KP hierarchies in order to give some general formulas for infinitesimal deformations of solutions of the Darboux–Egoroff system. As an application, we explain how Shramchenko’s deformations of Frobenius manifold structures on Hurwitz spaces fit into the general formalism of Givental–van de Leur twisted loop group action on the space of semi-simple Frobenius manifolds.
引用
收藏
页码:243 / 252
页数:9
相关论文
共 50 条
  • [1] A Remark on Deformations of Hurwitz Frobenius Manifolds
    Buryak, Alexandr
    Shadrin, Sergey
    LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (03) : 243 - 252
  • [2] Deformations of Frobenius structures on Hurwitz spaces
    Shramchenko, V
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (06) : 339 - 387
  • [3] Primary invariants of Hurwitz Frobenius manifolds
    Dunin-Barkowski, P.
    Norbury, P.
    Orantin, N.
    Popolitov, A.
    Shadrin, S.
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 297 - 331
  • [4] Real Doubles of Hurwitz Frobenius manifolds
    Shramchenko, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (03) : 635 - 680
  • [5] “Real Doubles” of Hurwitz Frobenius Manifolds
    Vasilisa Shramchenko
    Communications in Mathematical Physics, 2005, 256 : 635 - 680
  • [6] Riemann–Hilbert Problems for Hurwitz Frobenius Manifolds
    Dmitry Korotkin
    Vasilisa Shramchenko
    Letters in Mathematical Physics, 2011, 96 : 109 - 121
  • [7] Riemann-Hilbert Problems for Hurwitz Frobenius Manifolds
    Korotkin, Dmitry
    Shramchenko, Vasilisa
    LETTERS IN MATHEMATICAL PHYSICS, 2011, 96 (1-3) : 109 - 121
  • [8] Explicit examples of Hurwitz Frobenius manifolds in genus one
    Cutimanco, Miguel
    Shramchenko, Vasilisa
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [9] On G-function of Frobenius manifolds related to Hurwitz spaces
    Kokotov, A
    Korotkin, D
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (07) : 343 - 360
  • [10] Deformations of the bihamiltonian structures on the loop space of Frobenius manifolds
    Zhang, YJ
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2002, 9 : 243 - 257