Infinitesimal bendings of complete Euclidean hypersurfaces

被引:0
|
作者
Miguel Ibieta Jimenez
机构
[1] IMPA,
来源
manuscripta mathematica | 2018年 / 157卷
关键词
53C40; 53A07;
D O I
暂无
中图分类号
学科分类号
摘要
A local description of the non-flat infinitesimally bendable Euclidean hypersurfaces was recently given by Dajczer and Vlachos (Ann Mat 196:1961–1979, 2017. https://doi.org/10.1007/s10231-017-0641-8). From their classification, it follows that there is an abundance of infinitesimally bendable hypersurfaces that are not isometrically bendable. In this paper we consider the case of complete hypersurfaces f:Mn→Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M^n\rightarrow \mathbb {R}^{n+1}$$\end{document}, n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}. If there is no open subset where f is either totally geodesic or a cylinder over an unbounded hypersurface of R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document}, we prove that f is infinitesimally bendable only along ruled strips. In particular, if the hypersurface is simply connected, this implies that any infinitesimal bending of f is the variational field of an isometric bending.
引用
收藏
页码:513 / 527
页数:14
相关论文
共 50 条
  • [1] Infinitesimal bendings of complete Euclidean hypersurfaces
    Jimenez, Miguel Ibieta
    MANUSCRIPTA MATHEMATICA, 2018, 157 (3-4) : 513 - 527
  • [2] INFINITESIMAL BENDINGS OF CR-HYPERSURFACES
    GIGANTE, G
    TOMASSINI, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4B (01): : 213 - 222
  • [3] Conformal infinitesimal variations of Euclidean hypersurfaces
    M. Dajczer
    M. I. Jimenez
    Th. Vlachos
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 743 - 768
  • [4] Conformal infinitesimal variations of Euclidean hypersurfaces
    Dajczer, M.
    Jimenez, M. I.
    Vlachos, Th.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 743 - 768
  • [5] Finiteness of infinitesimal deformations and infinitesimal rigidity of hypersurfaces in real Euclidean spaces
    Cho, CK
    Han, CK
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (03) : 741 - 760
  • [6] Complete λ-Hypersurfaces in Euclidean Spaces
    Qingming Cheng
    Guoxin Wei
    Chinese Annals of Mathematics, Series B, 2022, 43 : 877 - 892
  • [7] RIGIDITY OF COMPLETE EUCLIDEAN HYPERSURFACES
    DAJCZER, M
    GROMOLL, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 31 (02) : 401 - 416
  • [8] Complete λ-Hypersurfaces in Euclidean Spaces
    Qingming CHENG
    Guoxin WEI
    Chinese Annals of Mathematics,Series B, 2022, (05) : 877 - 892
  • [9] Complete λ-Hypersurfaces in Euclidean Spaces
    Cheng, Qingming
    Wei, Guoxin
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (05) : 877 - 892
  • [10] INFINITESIMAL BENDINGS OF A HYPERBOLIC PARABOLOID
    TEN, LV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1975, (01): : 43 - 48