Infinitesimal bendings of complete Euclidean hypersurfaces

被引:0
|
作者
Miguel Ibieta Jimenez
机构
[1] IMPA,
来源
manuscripta mathematica | 2018年 / 157卷
关键词
53C40; 53A07;
D O I
暂无
中图分类号
学科分类号
摘要
A local description of the non-flat infinitesimally bendable Euclidean hypersurfaces was recently given by Dajczer and Vlachos (Ann Mat 196:1961–1979, 2017. https://doi.org/10.1007/s10231-017-0641-8). From their classification, it follows that there is an abundance of infinitesimally bendable hypersurfaces that are not isometrically bendable. In this paper we consider the case of complete hypersurfaces f:Mn→Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M^n\rightarrow \mathbb {R}^{n+1}$$\end{document}, n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}. If there is no open subset where f is either totally geodesic or a cylinder over an unbounded hypersurface of R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document}, we prove that f is infinitesimally bendable only along ruled strips. In particular, if the hypersurface is simply connected, this implies that any infinitesimal bending of f is the variational field of an isometric bending.
引用
收藏
页码:513 / 527
页数:14
相关论文
共 50 条