Infinitesimal bendings of complete Euclidean hypersurfaces

被引:5
|
作者
Jimenez, Miguel Ibieta [1 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
关键词
RIGIDITY;
D O I
10.1007/s00229-018-1000-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A local description of the non-flat infinitesimally bendable Euclidean hypersurfaces was recently given by Dajczer and Vlachos (Ann Mat 196: 1961-1979, 2017. https:// doi. org/10.1007/s10231-017-0641-8). From their classification, it follows that there is an abundance of infinitesimally bendable hypersurfaces that are not isometrically bendable. In this paper we consider the case of complete hypersurfaces f : Mn. Rn+ 1, n = 4. If there is no open subset where f is either totally geodesic or a cylinder over an unbounded hypersurface of R4, we prove that f is infinitesimally bendable only along ruled strips. In particular, if the hypersurface is simply connected, this implies that any infinitesimal bending of f is the variational field of an isometric bending.
引用
收藏
页码:513 / 527
页数:15
相关论文
共 50 条
  • [1] Infinitesimal bendings of complete Euclidean hypersurfaces
    Miguel Ibieta Jimenez
    manuscripta mathematica, 2018, 157 : 513 - 527
  • [2] INFINITESIMAL BENDINGS OF CR-HYPERSURFACES
    GIGANTE, G
    TOMASSINI, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4B (01): : 213 - 222
  • [3] Conformal infinitesimal variations of Euclidean hypersurfaces
    M. Dajczer
    M. I. Jimenez
    Th. Vlachos
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 743 - 768
  • [4] Conformal infinitesimal variations of Euclidean hypersurfaces
    Dajczer, M.
    Jimenez, M. I.
    Vlachos, Th.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 743 - 768
  • [5] Finiteness of infinitesimal deformations and infinitesimal rigidity of hypersurfaces in real Euclidean spaces
    Cho, CK
    Han, CK
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (03) : 741 - 760
  • [6] Complete λ-Hypersurfaces in Euclidean Spaces
    Qingming Cheng
    Guoxin Wei
    Chinese Annals of Mathematics, Series B, 2022, 43 : 877 - 892
  • [7] RIGIDITY OF COMPLETE EUCLIDEAN HYPERSURFACES
    DAJCZER, M
    GROMOLL, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 31 (02) : 401 - 416
  • [8] Complete λ-Hypersurfaces in Euclidean Spaces
    Qingming CHENG
    Guoxin WEI
    Chinese Annals of Mathematics,Series B, 2022, (05) : 877 - 892
  • [9] Complete λ-Hypersurfaces in Euclidean Spaces
    Cheng, Qingming
    Wei, Guoxin
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (05) : 877 - 892
  • [10] INFINITESIMAL BENDINGS OF A HYPERBOLIC PARABOLOID
    TEN, LV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1975, (01): : 43 - 48