A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

被引:0
|
作者
C. Carstensen
B. D. Reddy
M. Schedensack
机构
[1] Humboldt-Universität zu Berlin,Institut für Mathematik
[2] Yonsei University,Department of Computational Science and Engineering
[3] University of Cape Town,Department of Mathematics and Applied Mathematics
[4] Universität Bonn,Institut für Numerische Simulation
来源
Numerische Mathematik | 2016年 / 133卷
关键词
65N30; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a novel three-field formulation for the Bingham flow problem and its two-dimensional version named after Mosolov together with low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} error of the primal variable is bounded by the error of the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} best-approximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one.
引用
收藏
页码:37 / 66
页数:29
相关论文
共 50 条
  • [31] Quasi-optimal control of dynamic systems
    V. M. Aleksandrov
    Automation and Remote Control, 2016, 77 : 1163 - 1179
  • [32] Quasi-optimal partial order reduction
    Coti, Camille
    Petrucci, Laure
    Rodriguez, Cesar
    Sousa, Marcelo
    FORMAL METHODS IN SYSTEM DESIGN, 2021, 57 (01) : 3 - 33
  • [33] Algorithmic synthesis of quasi-optimal filter
    Dambrauskas, A
    Rinkevicius, V
    Karaliünas, B
    EMD' 2004: XIV INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC DISTURBANCES, PROCEEDINGS, 2004, : 201 - 202
  • [34] QUASI-OPTIMAL PRICE OF UNDEPLETABLE EXTERNALITIES
    HAMLEN, WA
    BELL JOURNAL OF ECONOMICS, 1977, 8 (01): : 324 - 334
  • [35] QUASI-OPTIMAL FILTERING OF RANDOM FUNCTIONS
    SOKOLOVSKIY, VZ
    ENGINEERING CYBERNETICS, 1977, 15 (01): : 135 - 138
  • [36] QUASI-OPTIMAL RECEPTION OF NOISE SIGNALS
    MAZOR, YL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1982, 25 (04): : 36 - 43
  • [37] Quasi-optimal arithmetic for quaternion polynomials
    Ziegler, M
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2003, 2906 : 705 - 715
  • [38] On constructing quasi-optimal robust systems
    M. G. Zotov
    Journal of Computer and Systems Sciences International, 2013, 52 : 677 - 685
  • [39] Quasi-optimal partial order reduction
    Camille Coti
    Laure Petrucci
    César Rodríguez
    Marcelo Sousa
    Formal Methods in System Design, 2021, 57 : 3 - 33
  • [40] Algorithm quasi-optimal (AQ) learning
    Cervone, Guido
    Franzese, Pasquale
    Keesee, Allen P. K.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (02) : 218 - 236