A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

被引:0
|
作者
C. Carstensen
B. D. Reddy
M. Schedensack
机构
[1] Humboldt-Universität zu Berlin,Institut für Mathematik
[2] Yonsei University,Department of Computational Science and Engineering
[3] University of Cape Town,Department of Mathematics and Applied Mathematics
[4] Universität Bonn,Institut für Numerische Simulation
来源
Numerische Mathematik | 2016年 / 133卷
关键词
65N30; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a novel three-field formulation for the Bingham flow problem and its two-dimensional version named after Mosolov together with low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} error of the primal variable is bounded by the error of the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} best-approximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one.
引用
收藏
页码:37 / 66
页数:29
相关论文
共 50 条
  • [21] THE ADAPTIVE NONCONFORMING FEM FOR THE PURE DISPLACEMENT PROBLEM IN LINEAR ELASTICITY IS OPTIMAL AND ROBUST
    Carstensen, Carsten
    Rabus, Hella
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1264 - 1283
  • [22] Asymptotically Quasi-Optimal Cryptography
    de Castro, Leo
    Hazay, Carmit
    Ishai, Yuval
    Vaikuntanathan, Vinod
    Venkitasubramaniam, Muthu
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 303 - 334
  • [23] QUASI-OPTIMAL FEEDBACK LAWS
    MIZUKAMI, K
    VARSAN, C
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (10): : 1027 - 1051
  • [24] PRESSURE-ROBUSTNESS IN QUASI-OPTIMAL A PRIORI ESTIMATES FOR THE STOKES PROBLEM
    Linke, Alexander
    Merdon, Christian
    Neilan, Michael
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 52 : 281 - 294
  • [25] Quasi-optimal polarization changer
    Bezborodov, V. I.
    Yanovskii, M. S.
    Knyaz'kov, B. N.
    Radioelectronics and Communications Systems, 1994, 37 (07):
  • [26] QUASI-OPTIMAL TRAINING ALGORITHMS
    TSYPKIN, YZ
    AUTOMATION AND REMOTE CONTROL, 1973, 34 (06) : 884 - 893
  • [27] Stratonovich nonlinear optimal and quasi-optimal filters
    B. I. Shakhtarin
    Journal of Communications Technology and Electronics, 2006, 51 : 1248 - 1260
  • [28] Pressure-robustness in quasi-optimal a priori estimates for the stokes problem
    Linke A.
    Merdon C.
    Neilan M.
    1600, Kent State University (52): : 281 - 294
  • [29] Stratonovich nonlinear optimal and quasi-optimal filters
    Shakhtarin, B. I.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2006, 51 (11) : 1248 - 1260
  • [30] QUASI-OPTIMAL CONTROL OF UNSTABLE PLANT
    ROGALSKIJ, FB
    SAMOJLENKO, JI
    AVTOMATIKA, 1977, (04): : 51 - 63