A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

被引:0
|
作者
C. Carstensen
B. D. Reddy
M. Schedensack
机构
[1] Humboldt-Universität zu Berlin,Institut für Mathematik
[2] Yonsei University,Department of Computational Science and Engineering
[3] University of Cape Town,Department of Mathematics and Applied Mathematics
[4] Universität Bonn,Institut für Numerische Simulation
来源
Numerische Mathematik | 2016年 / 133卷
关键词
65N30; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a novel three-field formulation for the Bingham flow problem and its two-dimensional version named after Mosolov together with low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} error of the primal variable is bounded by the error of the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} best-approximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one.
引用
收藏
页码:37 / 66
页数:29
相关论文
共 50 条
  • [1] A natural nonconforming FEM for the Bingham flow problem is quasi-optimal
    Carstensen, C.
    Reddy, B. D.
    Schedensack, M.
    NUMERISCHE MATHEMATIK, 2016, 133 (01) : 37 - 66
  • [2] Quasi-Optimal Meshes for Gradient Nonconforming Approximations
    Agouzal, Abdellatif
    Debit, Naima
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1562 - 1565
  • [3] Optimal adaptive nonconforming FEM for the Stokes problem
    Carstensen, Carsten
    Peterseim, Daniel
    Rabus, Hella
    NUMERISCHE MATHEMATIK, 2013, 123 (02) : 291 - 308
  • [4] Optimal adaptive nonconforming FEM for the Stokes problem
    Carsten Carstensen
    Daniel Peterseim
    Hella Rabus
    Numerische Mathematik, 2013, 123 : 291 - 308
  • [5] Quasi-Optimal Triangulations for Gradient Nonconforming Interpolates of Piecewise Regular Functions
    Agouzal, A.
    Debit, N.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (07) : 78 - 83
  • [6] A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY
    Becker, Roland
    Mao, Shipeng
    Shi, Zhongci
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4639 - 4659
  • [7] Quasi-optimal control in a polynomial tracking problem
    Socha, Leslaw
    EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, 2014, : 2889 - 2895
  • [8] Helmholtz FEM solutions are locally quasi-optimal modulo low frequencies
    Averseng, M.
    Galkowski, J.
    Spence, E. A.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (06)
  • [9] QUASI-OPTIMAL NONCONFORMING METHODS FOR SYMMETRIC ELLIPTIC PROBLEMS. II-OVERCONSISTENCY AND CLASSICAL NONCONFORMING ELEMENTS
    Veeser, Andreas
    Zanotti, Pietro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) : 266 - 292
  • [10] Simultaneous quasi-optimal convergence rates in FEM-BEM coupling
    Melenk, J. M.
    Praetorius, D.
    Wohlmuth, B.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (02) : 463 - 485