Precision matching of circular Wilson loops and strings in AdS5 × S5

被引:0
|
作者
Daniel Medina-Rincon
Arkady A. Tseytlin
Konstantin Zarembo
机构
[1] Nordita,Department of Physics and Astronomy
[2] KTH Royal Institute of Technology and Stockholm University,Blackett Laboratory
[3] Uppsala University,Hamilton Mathematical Institute
[4] Imperial College,undefined
[5] Trinity College,undefined
[6] Lebedev Institute,undefined
[7] ITEP,undefined
关键词
AdS-CFT Correspondence; Wilson, ’t Hooft and Polyakov loops;
D O I
暂无
中图分类号
学科分类号
摘要
Previous attempts to match the exact N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills expression for the expectation value of the 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}-BPS circular Wilson loop with the semiclassical AdS5 × S5 string theory prediction were not successful at the first subleading order. There was a missing prefactor ∼ λ−3/4 which could be attributed to the unknown normalization of the string path integral measure. Here we resolve this problem by computing the ratio of the string partition functions corresponding to the circular Wilson loop and the special 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{4} $$\end{document} supersymmetric latitude Wilson loop. The fact that the latter has a trivial expectation value in the gauge theory allows us to relate the prefactor to the contribution of the three zero modes of the “transverse” fluctuation operator in the 5-sphere directions.
引用
收藏
相关论文
共 50 条
  • [31] S-matrix for strings on η-deformed AdS5 x S5
    Arutyunov, Gleb
    Borsato, Riccardo
    Frolov, Sergey
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [32] Extremal correlator of three vertex operators for circular winding strings in AdS5 x S5
    Ryang, Shijong
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11):
  • [33] Wilson lines for AdS5 black strings
    Kiril Hristov
    Stefanos Katmadas
    Journal of High Energy Physics, 2015
  • [34] More on supersymmetric tensionless rotating strings in AdS5 x S5
    Mateos, D
    Mateos, T
    Townsend, PK
    QUANTUM THEORY AND SYMMETRIES, 2004, : 570 - 575
  • [35] Divergent energy strings in AdS5 × S5 with three angular momenta
    Sergio Giardino
    Journal of High Energy Physics, 2011
  • [36] Wilson lines for AdS5 black strings
    Hristov, Kiril
    Katmadas, Stefanos
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02): : 1 - 12
  • [37] Minimal surfaces of the AdS5 x S5 superstring and the symmetries of super Wilson loops at strong coupling
    Muenkler, Hagen
    Pollok, Jonas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (36)
  • [38] Deformed Neumann model from spinning strings on (AdS5 × S5)η
    Gleb Arutyunov
    Daniel Medina-Rincon
    Journal of High Energy Physics, 2014
  • [39] Strong coupling expansion of circular Wilson loops and string theories in AdS5 x S5 and AdS4 x CP3
    Giombi, Simone
    Tseytlin, Arkady A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [40] A crossing-symmetric phase for AdS5 x S5 strings
    Beisert, Niklas
    Hernandez, Rafael
    Lopez, Esperanza
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (11):