Precision matching of circular Wilson loops and strings in AdS5 × S5

被引:0
|
作者
Daniel Medina-Rincon
Arkady A. Tseytlin
Konstantin Zarembo
机构
[1] Nordita,Department of Physics and Astronomy
[2] KTH Royal Institute of Technology and Stockholm University,Blackett Laboratory
[3] Uppsala University,Hamilton Mathematical Institute
[4] Imperial College,undefined
[5] Trinity College,undefined
[6] Lebedev Institute,undefined
[7] ITEP,undefined
关键词
AdS-CFT Correspondence; Wilson, ’t Hooft and Polyakov loops;
D O I
暂无
中图分类号
学科分类号
摘要
Previous attempts to match the exact N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills expression for the expectation value of the 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}-BPS circular Wilson loop with the semiclassical AdS5 × S5 string theory prediction were not successful at the first subleading order. There was a missing prefactor ∼ λ−3/4 which could be attributed to the unknown normalization of the string path integral measure. Here we resolve this problem by computing the ratio of the string partition functions corresponding to the circular Wilson loop and the special 14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{4} $$\end{document} supersymmetric latitude Wilson loop. The fact that the latter has a trivial expectation value in the gauge theory allows us to relate the prefactor to the contribution of the three zero modes of the “transverse” fluctuation operator in the 5-sphere directions.
引用
收藏
相关论文
共 50 条
  • [21] Semiclassical Strings in AdS5 X S5 and Automorphic Functions
    Pawellek, Michael
    PHYSICAL REVIEW LETTERS, 2011, 106 (24)
  • [22] Quantum fluctuations of rotating strings in AdS5 x S5
    Fuji, Hiroyuki
    Satoh, Yuji
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (18): : 3673 - 3698
  • [23] Spinning strings in AdS5 x S5 and integrable systems
    Russo, JG
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (10) : S1321 - S1328
  • [24] Fast spinning strings on η deformed AdS5 x S5
    Banerjee, Aritra
    Bhattacharyya, Arpan
    Roychowdhury, Dibakar
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [25] Spinning strings in AdS5 x S5:: A worldsheet perspective
    Burrington, BA
    Liu, JT
    NUCLEAR PHYSICS B, 2006, 742 : 230 - 252
  • [26] Spinning pulsating strings in (AdS5 x S5)x
    Barik, Sorna Prava
    Panigrahi, Kamal L.
    Samal, Manoranjan
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (04):
  • [27] Scattering from (p, q)-strings in AdS5 × S5
    Silviu S. Pufu
    Victor A. Rodriguez
    Yifan Wang
    Journal of High Energy Physics, 2025 (3)
  • [28] Holographic cusped Wilson loops in q-deformed AdS5 x S5 spacetime
    Bai Nan
    Chen Hui-Huang
    Wu Jun-Bao
    CHINESE PHYSICS C, 2015, 39 (10)
  • [29] Graviton scattering in AdS5 x S5 at two loops
    Huang, Zhongjie
    Yuan, Ellis Ye
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (04)
  • [30] Spinning strings in AdS5 X S5 and integrable systems
    Arutyunov, G
    Frolov, S
    Russo, J
    Tseytlin, AA
    NUCLEAR PHYSICS B, 2003, 671 (1-3) : 3 - 50