Let A be an absolute valued algebra satisfying the identity (x,x,x2) = 0. We give some conditions which imply that A is isomorphic to R, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \mathbb{C} $\end{document}, H or D. These results enable us to show that if A is an algebra with involution then A is one of those classical algebras. We construct an example of A having dimension two and is not isomorphic to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \mathbb{C} $\end{document}.