Theorems of Barth-Lefschetz type and Morse theory on the space of paths in homogeneous spaces

被引:0
|
作者
Chaitanya Senapathi
机构
[1] Tata Institute of Fundamental Research,
来源
Geometriae Dedicata | 2015年 / 178卷
关键词
Flag varieties; Morse theory; Path space; Homotopy connectedness; Non-negative curvature; Canonical connection; 14M15; 32M10; 53C20; 53C56; 58B20;
D O I
暂无
中图分类号
学科分类号
摘要
Homotopy connectedness theorems for complex submanifolds of homogeneous spaces (sometimes referred to as theorems of Barth-Lefshetz type) have been established by a number of authors. Morse theory on the space of paths lead to an elegant proof of homotopy connectedness theorems for complex submanifolds of Hermitian symmetric spaces. In this work we extend this proof to a larger class of compact complex homogeneous spaces.
引用
收藏
页码:195 / 217
页数:22
相关论文
共 50 条
  • [31] STRONG MULTIPLICITY ONE THEOREMS FOR LOCALLY HOMOGENEOUS SPACES OF COMPACT-TYPE
    Lauret, Emilio A.
    Miatello, Roberto J.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (07) : 3163 - 3173
  • [32] T1 theorems on Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and their applications
    Yang, DC
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (01): : 53 - 72
  • [33] A Complete Real-Variable Theory of Hardy Spaces on Spaces of Homogeneous Type
    He, Ziyi
    Han, Yongsheng
    Li, Ji
    Liu, Liguang
    Yang, Dachun
    Yuan, Wen
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) : 2197 - 2267
  • [34] A Complete Real-Variable Theory of Hardy Spaces on Spaces of Homogeneous Type
    Ziyi He
    Yongsheng Han
    Ji Li
    Liguang Liu
    Dachun Yang
    Wen Yuan
    [J]. Journal of Fourier Analysis and Applications, 2019, 25 : 2197 - 2267
  • [35] Farkas-type theorems for positively homogeneous systems in ordered topological vector spaces
    Doagooei, A. R.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5541 - 5548
  • [36] Haar bases on quasi-metric measure spaces, and dyadic structure theorems for function spaces on product spaces of homogeneous type
    Kairema, Anna
    Li, Ji
    Pereyra, M. Cristina
    Ward, Lesley A.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (07) : 1793 - 1843
  • [37] LITTLEWOOD-PALEY THEORY ON SPACES OF HOMOGENEOUS TYPE AND THE CLASSICAL FUNCTION-SPACES
    HAN, YS
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 110 (530) : R3 - &
  • [38] Geometric Characterizations of Embedding Theorems: For Sobolev, Besov, and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type—via Orthonormal Wavelets
    Yanchang Han
    Yongsheng Han
    Ziyi He
    Ji Li
    Cristina Pereyra
    [J]. The Journal of Geometric Analysis, 2021, 31 : 8947 - 8978
  • [39] The boundedness of sublinear operators on Morrey-Herz spaces over the homogeneous type spaceОграниченность сублинейных операторов в пространстве Моррея-Герца над пространством однородного типа
    Yanlong Shi
    Xiangxing Tao
    [J]. Analysis Mathematica, 2013, 39 (1) : 69 - 85
  • [40] Wavelet characterizations of the atomic Hardy space H1 on spaces of homogeneous type
    Fu, Xing
    Yang, Dachun
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 44 (01) : 1 - 37