Farkas-type theorems for positively homogeneous systems in ordered topological vector spaces

被引:5
|
作者
Doagooei, A. R. [1 ,2 ]
机构
[1] Shahid Bahonar Univ Kerman, Mahani Math Res Ctr, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Dept Math, Kerman, Iran
关键词
Farkas-type theorem; Semi-infinite inequality system; Increasing and positively homogeneous (IPH) function; Normal set; Abstract convexity;
D O I
10.1016/j.na.2012.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present versions of the Farkas Lemma and the Gale Lemma for a semi-infinite system involving positively homogeneous functions in a topological vector space. In particular, we present two such versions for a semi-infinite system containing min-type functions. Our main theoretical tool is abstract convexity. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5541 / 5548
页数:8
相关论文
共 50 条
  • [1] Farkas-type theorems for positively homogeneous semi-infinite systems
    López, MA
    Martínez-Legaz, JE
    [J]. OPTIMIZATION, 2005, 54 (4-5) : 421 - 431
  • [2] Farkas-type theorems for interval linear systems
    Xia, Mengxue
    Li, Wei
    Li, Haohao
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07): : 1390 - 1400
  • [3] Insertion theorems for maps to ordered topological vector spaces
    Yamazaki, Kaori
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 195 : 312 - 326
  • [4] Farkas-Type Theorems and Applications: From IPH Functions to ICR Functions
    Kermani, V. Momenaei
    Doagooei, A. R.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (15) : 1690 - 1704
  • [5] Farkas-Type Results for Vector-Valued Functions with Applications
    N. Dinh
    M. A. Goberna
    M. A. López
    T. H. Mo
    [J]. Journal of Optimization Theory and Applications, 2017, 173 : 357 - 390
  • [6] Farkas-Type Results for Vector-Valued Functions with Applications
    Dinh, N.
    Goberna, M. A.
    Lopez, M. A.
    Mo, T. H.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (02) : 357 - 390
  • [7] Regularity conditions and Farkas-type results for systems with fractional functions
    Sun, Xiangkai
    Long, Xian-Jun
    Tang, Liping
    [J]. RAIRO-OPERATIONS RESEARCH, 2020, 54 (05) : 1369 - 1384
  • [8] KKM and Nash equilibria type theorems in topological ordered spaces
    Luo, Q
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) : 262 - 269
  • [9] Some new Farkas-type results for inequality systems with DC functions
    Radu Ioan Boţ
    Ioan Bogdan Hodrea
    Gert Wanka
    [J]. Journal of Global Optimization, 2007, 39 : 595 - 608
  • [10] Some new Farkas-type results for inequality systems with DC functions
    Bot, Radu Ioan
    Hodrea, Ioan Bogdan
    Wanka, Gert
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (04) : 595 - 608