Farkas-type theorems for positively homogeneous semi-infinite systems

被引:9
|
作者
López, MA
Martínez-Legaz, JE
机构
[1] Univ Alicante, Dept Estadist & Invest Operat, Alicante 03071, Spain
[2] Univ Autonoma Barcelona, CODE & Dept Econ & Hist Econ, Bellaterra 08193, Spain
关键词
Farkas-type theorems; positively homogeneous functions; generalized convex conjugation; semi-infinite inequality systems; linear systems; min-type systems;
D O I
10.1080/02331930500100205
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article deals with systems of infinitely many inequalities involving functions that are positively homogeneous over a nonempty convex cone of the Euclidean space. Generalized convex conjugation theory is applied to derive a Farkas-type and a Gale-type theorem for this kind of systems. These results are particularized for linear and min-type inequality systems.
引用
收藏
页码:421 / 431
页数:11
相关论文
共 50 条
  • [1] Farkas-type theorems for positively homogeneous systems in ordered topological vector spaces
    Doagooei, A. R.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5541 - 5548
  • [2] Farkas-type theorems for interval linear systems
    Xia, Mengxue
    Li, Wei
    Li, Haohao
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07): : 1390 - 1400
  • [3] FARKAS-MINKOWSKI SYSTEMS IN SEMI-INFINITE PROGRAMMING
    GOBERNA, MA
    LOPEZ, MA
    PASTOR, J
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1981, 7 (04): : 295 - 308
  • [4] Locally Farkas–Minkowski Systems in Convex Semi-Infinite Programming
    M. D. Fajardo
    M. A. López
    [J]. Journal of Optimization Theory and Applications, 1999, 103 : 313 - 335
  • [5] Locally Farkas-Minkowski systems in convex semi-infinite programming
    Fajardo, MD
    López, MA
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 103 (02) : 313 - 335
  • [6] New Farkas-type constraint qualifications in convex infinite programming
    Dinh, Nguyen
    Goberna, Miguel A.
    Lopez, Marco A.
    Son, Ta Quang
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (03) : 580 - 597
  • [7] Farkas-Type Theorems and Applications: From IPH Functions to ICR Functions
    Kermani, V. Momenaei
    Doagooei, A. R.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (15) : 1690 - 1704
  • [8] DUALITY AND FARKAS-TYPE RESULTS FOR DC INFINITE PROGRAMMING WITH INEQUALITY CONSTRAINTS
    Sun, Xiang-Kai
    Li, Sheng-Jie
    Zhao, Dan
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (04): : 1227 - 1244
  • [9] EXISTENCE THEOREMS IN SEMI-INFINITE PROGRAMS
    YAMASAKI, M
    [J]. LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1983, 215 : 93 - 106
  • [10] Regularity conditions and Farkas-type results for systems with fractional functions
    Sun, Xiangkai
    Long, Xian-Jun
    Tang, Liping
    [J]. RAIRO-OPERATIONS RESEARCH, 2020, 54 (05) : 1369 - 1384