Correlation function of null polygonal Wilson loops with local operators

被引:0
|
作者
L. F. Alday
E. I. Buchbinder
A.A. Tseytlin
机构
[1] University of Oxford,Mathematical Institute
[2] Imperial College,The Blackett Laboratory
[3] Lebedev Institute,undefined
关键词
Duality in Gauge Field Theories; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the correlator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{\left\langle {{W_n}\mathcal{O}} \right\rangle }} \left/ {{\left\langle {{W_n}} \right\rangle }} \right.} $\end{document} of a light-like polygonal Wilson loop with n cusps with a local operator (like the dilaton or a chiral primary scalar) in planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} super Yang-Mills theory. As a consequence of conformal symmetry, the main part of such correlator is a function F of 3n − 11conformal ratios. The first non-trivial case is n = 4 when F depends on just one conformal ratio ζ. This makes the corresponding correlator one of the simplest non-trivial observables that one would like to compute for generic values of the ‘t Hooft coupling λ. We compute F(ζ, λ) at leading order in both the strong coupling regime (using semiclassical AdS5 × S5 string theory) and the weak coupling regime (using perturbative gauge theory). Some results are also obtained for polygonal Wilson loops with more than four edges. Furthermore, we also discuss a connection to the relation between a correlator of local operators at null-separated positions and cusped Wilson loop suggested in arXiv:1007.3243.
引用
收藏
相关论文
共 50 条
  • [41] A NEW DEFINITION OF THE AREA OPERATORS INVOLVED IN THE COMPUTATION OF EXPECTATIONS OF WILSON LOOPS
    GYSIN, LM
    ANNALS OF PHYSICS, 1993, 226 (01) : 158 - 164
  • [42] Zeta-function regularization of holographic Wilson loops
    Aguilera-Damia, Jeremias
    Faraggi, Alberto
    Zayas, Leopoldo A. Pando
    Rathee, Vimal
    Silva, Guillermo A.
    PHYSICAL REVIEW D, 2018, 98 (04)
  • [43] Running coupling constant and correlation length from Wilson loops
    Campostrini, M
    Rossi, P
    Vicari, E
    NUCLEAR PHYSICS B, 1996, : 251 - 253
  • [44] Wilson expansion of QCD popagators at three loops: operators of dimension two and three
    K. G. Chetyrkin
    A. Maier
    Journal of High Energy Physics, 2010
  • [45] A semiclassical string description of Wilson loop with local operators
    Sakaguchi, Makoto
    Yoshida, Kentaroh
    NUCLEAR PHYSICS B, 2008, 798 (1-2) : 72 - 88
  • [46] Wilson expansion of QCD popagators at three loops: operators of dimension two and three
    Chetyrkin, K. G.
    Maier, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (01):
  • [47] β-function, renormalons and the mass term from perturbative Wilson loops
    Burgio, G
    Di Renzo, F
    Pepe, M
    Scorzato, L
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 935 - 937
  • [48] RUNNING COUPLING-CONSTANT AND CORRELATION LENGTH FROM WILSON LOOPS
    CAMPOSTRINI, M
    ROSSI, P
    VICARI, E
    PHYSICS LETTERS B, 1995, 349 (04) : 499 - 503
  • [49] Surprises in the AdS algebraic curve constructions - Wilson loops and correlation functions
    Janik, Romuald A.
    Laskos-Grabowski, Pawel
    NUCLEAR PHYSICS B, 2012, 861 (03) : 361 - 386
  • [50] Non-local order in Mott insulators, duality and Wilson loops
    Rath, Steffen Patrick
    Simeth, Wolfgang
    Endres, Manuel
    Zwerger, Wilhelm
    ANNALS OF PHYSICS, 2013, 334 : 256 - 271