Correlation function of null polygonal Wilson loops with local operators

被引:0
|
作者
L. F. Alday
E. I. Buchbinder
A.A. Tseytlin
机构
[1] University of Oxford,Mathematical Institute
[2] Imperial College,The Blackett Laboratory
[3] Lebedev Institute,undefined
关键词
Duality in Gauge Field Theories; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the correlator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{\left\langle {{W_n}\mathcal{O}} \right\rangle }} \left/ {{\left\langle {{W_n}} \right\rangle }} \right.} $\end{document} of a light-like polygonal Wilson loop with n cusps with a local operator (like the dilaton or a chiral primary scalar) in planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} super Yang-Mills theory. As a consequence of conformal symmetry, the main part of such correlator is a function F of 3n − 11conformal ratios. The first non-trivial case is n = 4 when F depends on just one conformal ratio ζ. This makes the corresponding correlator one of the simplest non-trivial observables that one would like to compute for generic values of the ‘t Hooft coupling λ. We compute F(ζ, λ) at leading order in both the strong coupling regime (using semiclassical AdS5 × S5 string theory) and the weak coupling regime (using perturbative gauge theory). Some results are also obtained for polygonal Wilson loops with more than four edges. Furthermore, we also discuss a connection to the relation between a correlator of local operators at null-separated positions and cusped Wilson loop suggested in arXiv:1007.3243.
引用
收藏
相关论文
共 50 条
  • [31] Null Wilson loops with a self-crossing and the Wilson loop/amplitude conjecture
    Georgiou, George
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [32] Wilson loops and vertex operators in a matrix model
    Iso, S
    Terachi, H
    Umetsu, H
    PHYSICAL REVIEW D, 2004, 70 (12): : 125005 - 1
  • [33] From correlation functions to Wilson loops
    Alday, Luis F.
    Eden, Burkhard
    Korchemsky, Gregory P.
    Maldacena, Juan
    Sokatchev, Emery
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [34] From correlation functions to Wilson loops
    Luis F. Alday
    Burkhard Eden
    Gregory P. Korchemsky
    Juan Maldacena
    Emery Sokatchev
    Journal of High Energy Physics, 2011
  • [35] Correlators of Wilson loops and local operators from multi-matrix models and strings in AdS
    Giombi, Simone
    Pestun, Vasily
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (01):
  • [36] Correlators of Wilson loops and local operators from multi-matrix models and strings in AdS
    Simone Giombi
    Vasily Pestun
    Journal of High Energy Physics, 2013
  • [37] Conformal geometry of null hexagons for Wilson loops and scattering amplitudes
    Dorn, H.
    Muenkler, H.
    Spielvoge, C.
    PHYSICS OF PARTICLES AND NUCLEI, 2014, 45 (04) : 692 - 703
  • [38] Conformal geometry of null hexagons for Wilson loops and scattering amplitudes
    H. Dorn
    H. Münkler
    C. Spielvogel
    Physics of Particles and Nuclei, 2014, 45 : 692 - 703
  • [39] NULL ZIG-ZAG WILSON LOOPS IN N=4 SYM
    Xie Zhifeng
    MODERN PHYSICS LETTERS A, 2010, 25 (08) : 627 - 639
  • [40] LOCAL GAUGE-INVARIANT GENERATORS FOR WILSON LOOPS
    AZAM, M
    PHYSICAL REVIEW D, 1989, 40 (10): : 3541 - 3542