Correlation function of null polygonal Wilson loops with local operators

被引:0
|
作者
L. F. Alday
E. I. Buchbinder
A.A. Tseytlin
机构
[1] University of Oxford,Mathematical Institute
[2] Imperial College,The Blackett Laboratory
[3] Lebedev Institute,undefined
关键词
Duality in Gauge Field Theories; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the correlator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{{\left\langle {{W_n}\mathcal{O}} \right\rangle }} \left/ {{\left\langle {{W_n}} \right\rangle }} \right.} $\end{document} of a light-like polygonal Wilson loop with n cusps with a local operator (like the dilaton or a chiral primary scalar) in planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} super Yang-Mills theory. As a consequence of conformal symmetry, the main part of such correlator is a function F of 3n − 11conformal ratios. The first non-trivial case is n = 4 when F depends on just one conformal ratio ζ. This makes the corresponding correlator one of the simplest non-trivial observables that one would like to compute for generic values of the ‘t Hooft coupling λ. We compute F(ζ, λ) at leading order in both the strong coupling regime (using semiclassical AdS5 × S5 string theory) and the weak coupling regime (using perturbative gauge theory). Some results are also obtained for polygonal Wilson loops with more than four edges. Furthermore, we also discuss a connection to the relation between a correlator of local operators at null-separated positions and cusped Wilson loop suggested in arXiv:1007.3243.
引用
收藏
相关论文
共 50 条
  • [1] Correlation function of null polygonal Wilson loops with local operators
    Alday, L. F.
    Buchbinder, E. I.
    Tseytlin, A. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [2] Correlation functions, null polygonal Wilson loops, and local operators
    Tim Adamo
    Journal of High Energy Physics, 2011
  • [3] Correlation functions, null polygonal Wilson loops, and local operators
    Adamo, Tim
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12):
  • [4] Comments on correlation functions of large spin operators and null polygonal Wilson loops
    Cardona, Carlos A.
    NUCLEAR PHYSICS B, 2013, 867 (02) : 165 - 181
  • [5] Perturbative correlation functions of null Wilson loops and local operators
    Luis F. Alday
    Paul Heslop
    Jakub Sikorowski
    Journal of High Energy Physics, 2013
  • [6] Perturbative correlation functions of null Wilson loops and local operators
    Alday, Luis F.
    Heslop, Paul
    Sikorowski, Jakub
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (03):
  • [7] Quantum mechanics of null polygonal Wilson loops
    Belitsky, A. V.
    Derkachov, S. E.
    Manashov, A. N.
    NUCLEAR PHYSICS B, 2014, 882 : 303 - 351
  • [8] Exceptional conformal anomaly of null polygonal Wilson loops
    Harald Dorn
    Journal of High Energy Physics, 2013
  • [9] Conical twist fields and null polygonal Wilson loops
    Castro-Alvaredo, Olalla A.
    Doyon, Benjamin
    Fioravanti, Davide
    NUCLEAR PHYSICS B, 2018, 931 : 146 - 178
  • [10] Exceptional conformal anomaly of null polygonal Wilson loops
    Dorn, Harald
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11):