Number fields generated by the 3-torsion points of an elliptic curve

被引:0
|
作者
Andrea Bandini
Laura Paladino
机构
[1] Università degli Studi di Parma,Dipartimento di Matematica
[2] Università della Calabria,Dipartimento di Matematica
来源
关键词
Elliptic curves; Torsion points; 11G05; 12F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{E}}}$$\end{document} be an elliptic curve, m a positive number and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}[m]}$$\end{document} the m-torsion subgroup of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}}$$\end{document} . Let P1 = (x1, y1), P2 = (x2, y2) form a basis of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}[m]}$$\end{document} . We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q(\mathcal{E}[m]) = \mathbb Q(x_1, x_2, \zeta_m, y_1)}$$\end{document} in general. For the case m = 3 we provide a description of all the possible extensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q(\mathcal{E}[3])}$$\end{document} in terms of generators, degree and Galois groups.
引用
下载
收藏
页码:157 / 181
页数:24
相关论文
共 50 条