Number fields generated by the 3-torsion points of an elliptic curve

被引:0
|
作者
Andrea Bandini
Laura Paladino
机构
[1] Università degli Studi di Parma,Dipartimento di Matematica
[2] Università della Calabria,Dipartimento di Matematica
来源
关键词
Elliptic curves; Torsion points; 11G05; 12F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{E}}}$$\end{document} be an elliptic curve, m a positive number and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}[m]}$$\end{document} the m-torsion subgroup of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}}$$\end{document} . Let P1 = (x1, y1), P2 = (x2, y2) form a basis of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{E}[m]}$$\end{document} . We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q(\mathcal{E}[m]) = \mathbb Q(x_1, x_2, \zeta_m, y_1)}$$\end{document} in general. For the case m = 3 we provide a description of all the possible extensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q(\mathcal{E}[3])}$$\end{document} in terms of generators, degree and Galois groups.
引用
下载
收藏
页码:157 / 181
页数:24
相关论文
共 50 条
  • [11] The mean number of 3-torsion elements in ray class groups of quadratic fields
    Ila Varma
    Israel Journal of Mathematics, 2022, 252 : 149 - 185
  • [12] Torsion points on elliptic curves over number fields of small degree
    Derickx, Maarten
    Kamienny, Sheldon
    Stein, William
    Stoll, Michael
    ALGEBRA & NUMBER THEORY, 2023, 17 (02) : 267 - 308
  • [13] Average frobenius distributions for elliptic curves with 3-torsion
    James, K
    JOURNAL OF NUMBER THEORY, 2004, 109 (02) : 278 - 298
  • [14] TORSION POINTS ON CM ELLIPTIC CURVES OVER REAL NUMBER FIELDS
    Bourdon, Abbey
    Clark, Pete L.
    Stankewicz, James
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) : 8457 - 8496
  • [15] ELLIPTIC CURVES WITH 2-TORSION CONTAINED IN THE 3-TORSION FIELD
    Brau, Julio
    Jones, Nathan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (03) : 925 - 936
  • [16] A NOTE ON ELLIPTIC CURVES WITH A RATIONAL 3-TORSION POINT
    Kozuma, Rintaro
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (04) : 1227 - 1255
  • [17] Versal families of elliptic curves with rational 3-torsion
    Bekker, B. M.
    Zarhin, Yu. G.
    SBORNIK MATHEMATICS, 2021, 212 (03) : 274 - 287
  • [18] Elliptic curve torsion points and division polynomials
    Burhanuddin, IA
    Huang, MDA
    Computational Aspects of Algebraic Curves, 2005, 13 : 13 - 37
  • [19] Torsion points of elliptic curves over multi-quadratic number fields
    Matsuda, Koji
    JOURNAL OF NUMBER THEORY, 2024, 262 : 28 - 43
  • [20] Three-Selmer groups for elliptic curves with 3-torsion
    Tony Feng
    Kevin James
    Carolyn Kim
    Eric Ramos
    Catherine Trentacoste
    Hui Xue
    The Ramanujan Journal, 2013, 31 : 435 - 459