Augmentation of Covering Arrays of Strength Two

被引:0
|
作者
Charles J. Colbourn
机构
[1] Arizona State University,School of Computing, Informatics, and Decision Systems Engineering
[2] Beihang University,State Key Laboratory of Software Development Environment
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Covering array; Augmentation; Kruskal–Katona theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Augmentation is an operation to increase the number of symbols in a covering array, without unnecessarily increasing the number of rows. For covering arrays of strength two, one type of augmentation forms a covering array on v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} symbols from one on v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} symbols together with v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} covering arrays each on two symbols. A careful analysis of the structure of the optimal binary covering arrays underlies an augmentation operation that reduces the number of rows required. Consequently a number of covering array numbers are improved.
引用
收藏
页码:2137 / 2147
页数:10
相关论文
共 50 条
  • [31] Quantum-Inspired Evolutionary Algorithms for Covering Arrays of Arbitrary Strength
    Wagner, Michael
    Kampel, Ludwig
    Simos, Dimitris E.
    ANALYSIS OF EXPERIMENTAL ALGORITHMS, SEA2 2019, 2019, 11544 : 300 - 316
  • [32] Covering arrays of strength 3 and 4 from holey difference matrices
    Li, Yang
    Ji, Lijun
    Yin, Jianxing
    DESIGNS CODES AND CRYPTOGRAPHY, 2009, 50 (03) : 339 - 350
  • [33] Covering arrays of strength 3 and 4 from holey difference matrices
    Yang Li
    Lijun Ji
    Jianxing Yin
    Designs, Codes and Cryptography, 2009, 50 : 339 - 350
  • [34] A SURVEY OF ORTHOGONAL ARRAYS OF STRENGTH TWO
    刘璋温
    井淑夫
    Acta Mathematicae Applicatae Sinica, 1995, (03) : 308 - 317
  • [35] On Schematic Orthogonal Arrays of Strength Two
    Zhang, Yong Lin
    ARS COMBINATORIA, 2009, 91 : 147 - 163
  • [36] Schematic Orthogonal Arrays of Strength Two
    Pang, Shanqi
    Li, Yongmei
    Yan, Rong
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (02) : 556 - 562
  • [37] Balanced covering arrays: A classification of covering arrays and packing arrays via exact methods
    Kampel, Ludwig
    Hiess, Irene
    Kotsireas, Ilias S.
    Simos, Dimitris E.
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (04) : 205 - 261
  • [38] Construction of Mixed Covering Arrays of Variable Strength Using a Tabu Search Approach
    Gonzalez-Hernandez, Loreto
    Rangel-Valdez, Nelson
    Torres-Jimenez, Jose
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT 1, 2010, 6508 : 51 - 64
  • [39] Tower of covering arrays
    Torres-Jimenez, Jose
    Izquierdo-Marquez, Idelfonso
    Kacker, Raghu N.
    Kuhn, D. Richard
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 141 - 146
  • [40] Survey of Covering Arrays
    Torres-Jimenez, Jose
    Izquierdo-Marquez, Idelfonso
    2013 15TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2013), 2014, : 20 - 27