Augmentation of Covering Arrays of Strength Two

被引:0
|
作者
Charles J. Colbourn
机构
[1] Arizona State University,School of Computing, Informatics, and Decision Systems Engineering
[2] Beihang University,State Key Laboratory of Software Development Environment
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Covering array; Augmentation; Kruskal–Katona theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Augmentation is an operation to increase the number of symbols in a covering array, without unnecessarily increasing the number of rows. For covering arrays of strength two, one type of augmentation forms a covering array on v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} symbols from one on v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} symbols together with v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} covering arrays each on two symbols. A careful analysis of the structure of the optimal binary covering arrays underlies an augmentation operation that reduces the number of rows required. Consequently a number of covering array numbers are improved.
引用
收藏
页码:2137 / 2147
页数:10
相关论文
共 50 条
  • [21] Improved Strength Four Covering Arrays with Three Symbols
    Maity, Soumen
    Akhtar, Yasmeen
    Chandrasekharan, Reshma C.
    Colbourn, Charles J.
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 223 - 239
  • [22] Covering arrays of higher strength from permutation vectors
    Sherwood, GB
    Martirosyan, SS
    Colbourn, CJ
    JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (03) : 202 - 213
  • [23] Improving two recursive constructions for covering arrays
    Colbourn C.J.
    Zhou J.
    Journal of Statistical Theory and Practice, 2012, 6 (1) : 30 - 47
  • [24] Memetic Algorithms for Constructing Binary Covering Arrays of Strength Three
    Rodriguez-Tello, Eduardo
    Torres-Jimenez, Jose
    ARTIFICIAL EVOLUTION, 2010, 5975 : 86 - 97
  • [25] Effectively computing high strength mixed covering arrays with constraints
    Ansotegui, Carlos
    Torres, Eduard
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2024, 185
  • [26] Simulated Annealing for Constructing Binary Covering Arrays of Variable Strength
    Torres-Jimenez, Jose
    Rodriguez-Tello, Eduardo
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [27] Covering arrays of strength three from extended permutation vectors
    Torres-Jimenez, Jose
    Izquierdo-Marquez, Idelfonso
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (11) : 2629 - 2643
  • [28] Covering arrays of strength three from extended permutation vectors
    Jose Torres-Jimenez
    Idelfonso Izquierdo-Marquez
    Designs, Codes and Cryptography, 2018, 86 : 2629 - 2643
  • [29] A density-based greedy algorithm for higher strength covering arrays
    Bryce, Renee C.
    Colbourn, Charles J.
    SOFTWARE TESTING VERIFICATION & RELIABILITY, 2009, 19 (01): : 37 - 53
  • [30] A New Backtracking Algorithm for Constructing Binary Covering Arrays of Variable Strength
    Bracho-Rios, Josue
    Torres-Jimenez, Jose
    Rodriguez-Tello, Eduardo
    MICAI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5845 : 397 - 407