Augmentation of Covering Arrays of Strength Two

被引:0
|
作者
Charles J. Colbourn
机构
[1] Arizona State University,School of Computing, Informatics, and Decision Systems Engineering
[2] Beihang University,State Key Laboratory of Software Development Environment
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Covering array; Augmentation; Kruskal–Katona theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Augmentation is an operation to increase the number of symbols in a covering array, without unnecessarily increasing the number of rows. For covering arrays of strength two, one type of augmentation forms a covering array on v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} symbols from one on v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} symbols together with v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} covering arrays each on two symbols. A careful analysis of the structure of the optimal binary covering arrays underlies an augmentation operation that reduces the number of rows required. Consequently a number of covering array numbers are improved.
引用
收藏
页码:2137 / 2147
页数:10
相关论文
共 50 条
  • [1] Augmentation of Covering Arrays of Strength Two
    Colbourn, Charles J.
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2137 - 2147
  • [2] Covering arrays, augmentation, and quilting arrays
    Colbourn, Charles J.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)
  • [3] Cover starters for covering arrays of strength two
    Lobb, Jason R.
    Colbourn, Charles J.
    Danziger, Peter
    Stevens, Brett
    Torres-Jimenez, Jose
    DISCRETE MATHEMATICS, 2012, 312 (05) : 943 - 956
  • [4] Products of mixed covering arrays of strength two
    Colbourn, CJ
    Martirosyan, SS
    Mullen, GL
    Shasha, D
    Sherwood, GB
    Yucas, JL
    JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (02) : 124 - 138
  • [5] Strength two covering arrays: Existence tables and projection
    Colbourn, Charles J.
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 772 - 786
  • [6] Strength Two Covering Arrays Construction Using a SAT Representation
    Lopez-Escogido, Daniel
    Torres-Jimenez, Jose
    Rodriguez-Tello, Eduardo
    Rangel-Valdez, Nelson
    MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 44 - 53
  • [7] Variable strength covering arrays
    Raaphorst, Sebastian
    Moura, Lucia
    Stevens, Brett
    JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (09) : 417 - 438
  • [8] Covering arrays of strength three
    Chateauneuf, MA
    Colbourn, CJ
    Kreher, DL
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 16 (03) : 235 - 242
  • [9] Covering Arrays of Strength Three
    M. A. Chateauneuf
    Charles J. Colbourn
    D. L. Kreher
    Designs, Codes and Cryptography, 1999, 16 : 235 - 242
  • [10] A Construction of Variable Strength Covering Arrays
    Ling JIANG
    Ce SHI
    Acta Mathematicae Applicatae Sinica, 2021, 37 (02) : 240 - 250