The Weyl BMS group and Einstein’s equations

被引:0
|
作者
Laurent Freidel
Roberto Oliveri
Daniele Pranzetti
Simone Speziale
机构
[1] Perimeter Institute for Theoretical Physics,
[2] CEICO,undefined
[3] Institute of Physics of the Czech Academy of Sciences,undefined
[4] Università degli Studi di Udine,undefined
[5] CPT-UMR 7332,undefined
[6] CNRS,undefined
关键词
Models of Quantum Gravity; Space-Time Symmetries; Classical Theories of Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an extension of the BMS group, which we refer to as Weyl BMS or BMSW for short, that includes super-translations, local Weyl rescalings and arbitrary diffeomorphisms of the 2d sphere metric. After generalizing the Barnich-Troessaert bracket, we show that the Noether charges of the BMSW group provide a centerless representation of the BMSW Lie algebra at every cross section of null infinity. This result is tantamount to proving that the flux-balance laws for the Noether charges imply the validity of the asymptotic Einstein’s equations at null infinity. The extension requires a holographic renormalization procedure, which we construct without any dependence on background fields. The renormalized phase space of null infinity reveals new pairs of conjugate variables. Finally, we show that BMSW group elements label the gravitational vacua.
引用
收藏
相关论文
共 50 条
  • [41] Hyperbolic reductions for Einstein's equations
    Friedrich, H.
    Classical and Quantum Gravity, 13 (06):
  • [42] Einstein’s equations and Clifford algebra
    Patrick R. Girard
    Advances in Applied Clifford Algebras, 1999, 9 (2) : 225 - 230
  • [43] Einstein's equations and the chiral model
    Husain, V
    PHYSICAL REVIEW D, 1996, 53 (08): : 4327 - 4334
  • [44] Counting solutions of Einstein's equations
    Siklos, S
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (07) : 1931 - 1948
  • [45] A Possible Reinterpretation of Einstein’s Equations
    A. Bouda
    A. Belabbas
    International Journal of Theoretical Physics, 2010, 49 : 2630 - 2639
  • [46] A Possible Reinterpretation of Einstein's Equations
    Bouda, A.
    Belabbas, A.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (10) : 2630 - 2639
  • [47] Hyperbolic reductions for Einstein's equations
    Friedrich, H
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (06) : 1451 - 1469
  • [48] EXTENSION OF THE INVARIANCE GROUP FOR DIMENSIONALLY REDUCED EINSTEIN EQUATIONS
    WU, YS
    PHYSICS LETTERS A, 1983, 96 (04) : 179 - 182
  • [49] Linearized pseudo-Einstein equations on the Heisenberg group
    Barletta, Elisabetta
    Dragomir, Sorin
    Jacobowitz, Howard
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 : 95 - 105
  • [50] Solving Einstein's equations on supercomputers
    Allen, G
    Goodale, T
    Lanfermann, G
    Radke, T
    Seidel, E
    Benger, W
    Hege, HC
    Merzky, A
    Massó, J
    Shalf, J
    COMPUTER, 1999, 32 (12) : 52 - +