Einstein's equations and the chiral model

被引:15
|
作者
Husain, V [1 ]
机构
[1] PENN STATE UNIV,DEPT PHYS,CTR GRAVITAT PHYS & GEOMETRY,UNIVERSITY PK,PA 16802
来源
PHYSICAL REVIEW D | 1996年 / 53卷 / 08期
关键词
D O I
10.1103/PhysRevD.53.4327
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The vacuum Einstein equations for spacetimes with two commuting spacelike Killing field symmetries are studied using the Ashtekar variables. The case of compact spacelike hypersurfaces which are three-tori is considered, and the determinant of the Killing two-torus metric is chosen as the time gauge. The Hamiltonian evolution equations in this gauge may be rewritten as those of a modified SL(2) principal chiral model with a time-dependent ''coupling constant,'' or equivalently, with time-dependent SL(2) structure constants. The evolution equations have a generalized zero-curvature formulation. Using this form, the explicit time dependence of an infinite number of spatial-diffeomorphism-invariant phase-space functionals is extracted, and it is shown that these are observables in the sense that they Poisson commute with the reduced Hamiltonian. An infinite set of observables that have SL(2) indices is also found. This determination of the explicit time dependence of an infinite set of spatial-diffeomorphism-invariant observables amounts to the solutions of the Hamiltonian Einstein equations for these observables.
引用
收藏
页码:4327 / 4334
页数:8
相关论文
共 50 条