Separable infinity harmonic functions in cones

被引:0
|
作者
Marie-Françoise Bidaut-Véron
Marta Garcia-Huidobro
Laurent Véron
机构
[1] Université Francois Rabelais,Laboratoire de Mathématiques et Physique Théorique
[2] Pontificia Università Catolica,Departamento de Mathematicà
关键词
35D40; 35J70; 35J62;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of separable infinity harmonic functions in any cone of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^N$$\end{document} vanishing on its boundary under the form u(r,σ)=r-βψ(σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(r,\sigma )=r^{-\beta }\psi (\sigma )$$\end{document}. We prove that such solutions exist, the spherical part ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} satisfies a nonlinear eigenvalue problem on a subdomain of the sphere SN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{N-1}$$\end{document} and that the exponents β=β+>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =\beta _+>0$$\end{document} and β=β-<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =\beta _-<0$$\end{document} are uniquely determined if the domain is smooth. We extend some of our results to non-smooth domains.
引用
收藏
相关论文
共 50 条