An asymptotic sharp Sobolev regularity for planar infinity harmonic functions

被引:13
|
作者
Koch, Herbert [1 ]
Zhang, Yi Ru-Ya [2 ]
Zhou, Yuan [3 ]
机构
[1] Univ Bonn, Inst Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Hausdorff Ctr Math, Endenicher Allee 62, D-53115 Bonn, Germany
[3] Beihang Univ, Dept Math, Beijing 100191, Peoples R China
关键词
infinity-harmonic function; Absolute minimizer; Sobolev regularity; MINIMIZATION PROBLEMS; LIPSCHITZ EXTENSIONS; LAPLACIAN;
D O I
10.1016/j.matpur.2019.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an arbitrary planar infinity-harmonic function u, for each alpha > 0 we establish a quantitative W-loc(1,2)-estimate of vertical bar Du vertical bar(alpha), which is sharp as alpha -> 0. We also show that the distributional determinant of u is a Radon measure enjoying some quantitative lower and upper bounds. As a by-product, for each p > 2 we obtain some quantitative W-loc(1,p)-estimates of u, and consequently, an L-p-Liouville property for infinity-harmonic functions in the whole plane. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:457 / 482
页数:26
相关论文
共 50 条