We define a new type of spectrum, called the condition pseudo S-spectra of linear operators in a right quaternionic Hilbert space as σεS(T):={q∈H:‖Qq(T)‖‖Qq(T)-1‖>1ε}⋃{q∈H:‖Qq(T)‖‖Qq(T)-1‖=1ε}.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma _\varepsilon ^S(T):=\Big \{{\mathbf {q}}\in {\mathbb {H}}: \Vert Q_{{\mathbf {q}}}(T)\Vert \Vert Q_{{\mathbf {q}}}(T)^{-1}\Vert >\frac{1}{\varepsilon }\Big \}\bigcup \Big \{{\mathbf {q}}\in {\mathbb {H}}:\Vert Q_{{\mathbf {q}}}(T)\Vert \Vert Q_{{\mathbf {q}}}(T)^{-1}\Vert =\frac{1}{\varepsilon }\Big \}.$$\end{document} This is expected to be useful in solving operator equations. The goal of this paper consists of establishing a necessary and sufficient condition for the characterization of the condition spectrum of a compact operator in a right quaternionic Hilbert space.
机构:
Univ Sfax, Fac Sci Sfax, Dept Math, B P 1171,Soukra Rd Km 3-5, Sfax 3000, TunisiaUniv Sfax, Fac Sci Sfax, Dept Math, B P 1171,Soukra Rd Km 3-5, Sfax 3000, Tunisia