A Necessary and Sufficient Condition for Hardy's Operator in the Variable Lebesgue Space

被引:4
|
作者
Mamedov, Farman [1 ,2 ]
Zeren, Yusuf [3 ]
机构
[1] SOCAR Co, Inst Math & Mech, NAS, Baku 1141, Azerbaijan
[2] SOCAR Co, OGRDI, Baku 1141, Azerbaijan
[3] Yildiz Tech Univ, Dept Math, TR-34220 Davutpasha, Turkey
关键词
WEIGHTED INEQUALITY; REGULARITY;
D O I
10.1155/2014/342910
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variable exponent Hardy inequality parallel to x(beta(x)-1) integral(x)(0) f(t)dt parallel to(LP(.)(0,l)) <= C parallel to x(beta(x)) f parallel to(LP(.)(0,l)), f >= 0 is proved assuming that the exponents p : (0,l) -> (1, infinity), beta : (0, l) -> R not rapidly oscilate near origin and 1/p'(0) - beta > 0. The main result is a necessary and sufficient condition on p, beta generalizing known results on this inequality.
引用
收藏
页数:7
相关论文
共 50 条