Characterization of the condition S-spectrum of a compact operator in a right quaternionic Hilber space

被引:0
|
作者
Bilel Saadaoui
机构
[1] University of Sfax,Departement of Mathematics, Faculty of Sciences of Sfax
关键词
Quaternionic; Quaternionic Hilbert space; Condition pseudo S-spectra; Compact operator; 47A06;
D O I
暂无
中图分类号
学科分类号
摘要
We define a new type of spectrum, called the condition pseudo S-spectra of linear operators in a right quaternionic Hilbert space as σεS(T):={q∈H:‖Qq(T)‖‖Qq(T)-1‖>1ε}⋃{q∈H:‖Qq(T)‖‖Qq(T)-1‖=1ε}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\varepsilon ^S(T):=\Big \{{\mathbf {q}}\in {\mathbb {H}}: \Vert Q_{{\mathbf {q}}}(T)\Vert \Vert Q_{{\mathbf {q}}}(T)^{-1}\Vert >\frac{1}{\varepsilon }\Big \}\bigcup \Big \{{\mathbf {q}}\in {\mathbb {H}}:\Vert Q_{{\mathbf {q}}}(T)\Vert \Vert Q_{{\mathbf {q}}}(T)^{-1}\Vert =\frac{1}{\varepsilon }\Big \}.$$\end{document} This is expected to be useful in solving operator equations. The goal of this paper consists of establishing a necessary and sufficient condition for the characterization of the condition spectrum of a compact operator in a right quaternionic Hilbert space.
引用
收藏
页码:707 / 724
页数:17
相关论文
共 37 条
  • [1] Characterization of the condition S-spectrum of a compact operator in a right quaternionic Hilber space
    Saadaoui, Bilel
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 707 - 724
  • [2] Characterization of the essential approximation S-spectrum and the essential defect S-spectrum in a right quaternionic Hilbert space
    Ammar, Aymen
    Jeribi, Aref
    Saadaoui, Bilel
    FILOMAT, 2023, 37 (11) : 3513 - 3525
  • [3] Pseudo S-spectrum in a right quaternionic Hilbert space
    Ammar, Aymen
    Jeribi, Aref
    Lazrag, Nawrez
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (04): : 581 - 605
  • [4] S-Spectrum and the quaternionic Cayley transform of an operator
    Muraleetharan, B.
    Sabadini, I.
    Thirulogasanthar, K.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 442 - 455
  • [5] Essential S-Spectrum for Quaternionic Quasi-Compact Operators on Right Quaternionic Hilbert Spaces
    Ammar, Aymen
    Jeribi, Aref
    Saadaoui, Bilel
    ACTA APPLICANDAE MATHEMATICAE, 2021, 176 (01)
  • [6] S-spectrum and numerical range of a quaternionic operator
    Carvalho, Luis
    Diogo, Cristina
    Mendes, Sergio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (02)
  • [7] Essential S-Spectrum for Quaternionic Quasi-Compact Operators on Right Quaternionic Hilbert Spaces
    Aymen Ammar
    Aref Jeribi
    Bilel Saadaoui
    Acta Applicandae Mathematicae, 2021, 176
  • [8] S-Spectrum of Quaternionic Right Linear Bounded Operators
    Moulaharabbi, Somayya
    Barraa, Mohamed
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (03)
  • [9] S-Spectrum of Quaternionic Right Linear Bounded Operators
    Somayya Moulaharabbi
    Mohamed Barraa
    Advances in Applied Clifford Algebras, 2023, 33
  • [10] Kato S-Spectrum in the Quaternionic Setting
    K. Thirulogasanthar
    B. Muraleetharan
    Advances in Applied Clifford Algebras, 2020, 30