Characterization of the essential approximation S-spectrum and the essential defect S-spectrum in a right quaternionic Hilbert space

被引:0
|
作者
Ammar, Aymen [1 ]
Jeribi, Aref [1 ]
Saadaoui, Bilel [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Soukra Rd Km 3-5,BP 1171, Sfax 3000, Tunisia
关键词
Quaternionic; Compact; Essential S-spectra;
D O I
10.2298/FIL2311513A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study the essential approximation S-spectrum and the essential defect S-spectrum in a right quaternionic Hilbert space. Our results are used to describe the investigation of the stability of the essential approximation S-spectrum and the essential defect S-spectrum of linear operator A subjected to additive perturbation K such that (AK + KA + K-2 - 2Re(q)K)R-q(A + K)(-1) or R-q(A + K)(-1)(AK + KA + K-2 - 2Re(q)K) is a quasi-compact operator in the right quaternionic Hilbert space.
引用
收藏
页码:3513 / 3525
页数:13
相关论文
共 50 条
  • [1] Pseudo S-spectrum in a right quaternionic Hilbert space
    Ammar, Aymen
    Jeribi, Aref
    Lazrag, Nawrez
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (04): : 581 - 605
  • [2] Essential S-Spectrum for Quaternionic Quasi-Compact Operators on Right Quaternionic Hilbert Spaces
    Ammar, Aymen
    Jeribi, Aref
    Saadaoui, Bilel
    ACTA APPLICANDAE MATHEMATICAE, 2021, 176 (01)
  • [3] Essential S-Spectrum for Quaternionic Quasi-Compact Operators on Right Quaternionic Hilbert Spaces
    Aymen Ammar
    Aref Jeribi
    Bilel Saadaoui
    Acta Applicandae Mathematicae, 2021, 176
  • [4] Riesz Projection and Essential S-spectrum in Quaternionic Setting
    Baloudi, Hatem
    Belgacem, Sayda
    Jeribi, Aref
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (07)
  • [5] Fredholm operators and essential S-spectrum in the quaternionic setting
    Muraleetharan, B.
    Thirulogasanthar, K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
  • [6] Riesz Projection and Essential S-spectrum in Quaternionic Setting
    Hatem Baloudi
    Sayda Belgacem
    Aref Jeribi
    Complex Analysis and Operator Theory, 2022, 16
  • [7] Characterization of the condition S-spectrum of a compact operator in a right quaternionic Hilber space
    Bilel Saadaoui
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 707 - 724
  • [8] Characterization of the condition S-spectrum of a compact operator in a right quaternionic Hilber space
    Saadaoui, Bilel
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 707 - 724
  • [9] S-Spectrum of Quaternionic Right Linear Bounded Operators
    Moulaharabbi, Somayya
    Barraa, Mohamed
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (03)
  • [10] S-Spectrum of Quaternionic Right Linear Bounded Operators
    Somayya Moulaharabbi
    Mohamed Barraa
    Advances in Applied Clifford Algebras, 2023, 33