Characterization of the essential approximation S-spectrum and the essential defect S-spectrum in a right quaternionic Hilbert space

被引:0
|
作者
Ammar, Aymen [1 ]
Jeribi, Aref [1 ]
Saadaoui, Bilel [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Soukra Rd Km 3-5,BP 1171, Sfax 3000, Tunisia
关键词
Quaternionic; Compact; Essential S-spectra;
D O I
10.2298/FIL2311513A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study the essential approximation S-spectrum and the essential defect S-spectrum in a right quaternionic Hilbert space. Our results are used to describe the investigation of the stability of the essential approximation S-spectrum and the essential defect S-spectrum of linear operator A subjected to additive perturbation K such that (AK + KA + K-2 - 2Re(q)K)R-q(A + K)(-1) or R-q(A + K)(-1)(AK + KA + K-2 - 2Re(q)K) is a quasi-compact operator in the right quaternionic Hilbert space.
引用
收藏
页码:3513 / 3525
页数:13
相关论文
共 50 条