Motion Deblurring of Faces

被引:0
|
作者
Grigorios G. Chrysos
Paolo Favaro
Stefanos Zafeiriou
机构
[1] Imperial College London,Department of Computing
[2] University of Bern,Department of Informatics
来源
关键词
Learning motion deblurring; Face deblurring; Data-driven networks;
D O I
暂无
中图分类号
学科分类号
摘要
Face analysis lies at the heart of computer vision with remarkable progress in the past decades. Face recognition and tracking are tackled by building invariance to fundamental modes of variation such as illumination, 3D pose. A much less standing mode of variation is motion deblurring, which however presents substantial challenges in face analysis. Recent approaches either make oversimplifying assumptions, e.g. in cases of joint optimization with other tasks, or fail to preserve the highly structured shape/identity information. We introduce a two-step architecture tailored to the challenges of motion deblurring: the first step restores the low frequencies; the second restores the high frequencies, while ensuring that the outputs span the natural images manifold. Both steps are implemented with a supervised data-driven method; to train those we devise a method for creating realistic motion blur by averaging a variable number of frames. The averaged images originate from the 2MF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2MF^2$$\end{document} dataset with 19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19$$\end{document} million facial frames, which we introduce for the task. Considering deblurring as an intermediate step, we conduct a thorough experimentation on high-level face analysis tasks, i.e. landmark localization and face verification, on blurred images. The experimental evaluation demonstrates the superiority of our method.
引用
收藏
页码:801 / 823
页数:22
相关论文
共 50 条
  • [31] Motion Deblurring Based On Edge Prior
    Chen Yingying
    Zhao Zhigang
    Pan Zhenkuan
    Gao Xiang
    Wan Jiaona
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1164 - 1167
  • [32] Motion deblurring based on compressed sensing
    1600, CESER Publications, Post Box No. 113, Roorkee, 247667, India (51):
  • [33] Fast and Robust linear motion deblurring
    Martin Welk
    Patrik Raudaschl
    Thomas Schwarzbauer
    Martin Erler
    Martin Läuter
    Signal, Image and Video Processing, 2015, 9 : 1221 - 1234
  • [34] A progressive framework for rotary motion deblurring
    Qin, Jinhui
    Ma, Yong
    Huang, Jun
    Fan, Fan
    Du, You
    DEFENCE TECHNOLOGY, 2024, 32 : 159 - 172
  • [35] Motion Deblurring Method for Multiple Images
    Yan, Cheng
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 254 - 257
  • [36] A progressive framework for rotary motion deblurring
    Jinhui Qin
    Yong Ma
    Jun Huang
    Fan Fan
    You Du
    Defence Technology, 2024, 32 (02) : 159 - 172
  • [37] Motion Deblurring From a Single Image
    Cai, Chengtao
    Liu, An
    Zhang, Baolu
    2016 IEEE 20TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2016, : 406 - 410
  • [38] Single Image Blind Motion Deblurring
    Duan, Bingbing
    Li, Yi
    EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2016), 2016, 10033
  • [39] Deep Generative Filter for Motion Deblurring
    Ramakrishnan, Sainandan
    Pachori, Shubham
    Gangopadhyay, Aalok
    Raman, Shanmuganathan
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2993 - 3000
  • [40] Motion-induced blindness: a consequence of overzealous motion deblurring?
    Wallis, T. S. A.
    Arnold, D. H.
    PERCEPTION, 2008, 37 : 157 - 157