Motion Deblurring of Faces

被引:0
|
作者
Grigorios G. Chrysos
Paolo Favaro
Stefanos Zafeiriou
机构
[1] Imperial College London,Department of Computing
[2] University of Bern,Department of Informatics
来源
关键词
Learning motion deblurring; Face deblurring; Data-driven networks;
D O I
暂无
中图分类号
学科分类号
摘要
Face analysis lies at the heart of computer vision with remarkable progress in the past decades. Face recognition and tracking are tackled by building invariance to fundamental modes of variation such as illumination, 3D pose. A much less standing mode of variation is motion deblurring, which however presents substantial challenges in face analysis. Recent approaches either make oversimplifying assumptions, e.g. in cases of joint optimization with other tasks, or fail to preserve the highly structured shape/identity information. We introduce a two-step architecture tailored to the challenges of motion deblurring: the first step restores the low frequencies; the second restores the high frequencies, while ensuring that the outputs span the natural images manifold. Both steps are implemented with a supervised data-driven method; to train those we devise a method for creating realistic motion blur by averaging a variable number of frames. The averaged images originate from the 2MF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2MF^2$$\end{document} dataset with 19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19$$\end{document} million facial frames, which we introduce for the task. Considering deblurring as an intermediate step, we conduct a thorough experimentation on high-level face analysis tasks, i.e. landmark localization and face verification, on blurred images. The experimental evaluation demonstrates the superiority of our method.
引用
收藏
页码:801 / 823
页数:22
相关论文
共 50 条
  • [21] A Motion Deblurring Disentangled Representation Network
    Ji, Ye
    Dai, Yaping
    Jia, Zhiyang
    Zhao, Kaixin
    Wu, Xiangdong
    KNOWLEDGE-BASED SYSTEMS, 2022, 249
  • [22] Motion adaptive deblurring filter for LCD
    Xia, Jun
    Shi, Yue
    Yin, Hanchun
    DISPLAYS, 2009, 30 (01) : 27 - 31
  • [23] Motion deblurring using the similarity of the multiscales
    Li, Haisen
    Zhang, Yanning
    Sun, Jinqiu
    OPTIK, 2015, 126 (04): : 473 - 477
  • [24] Motion Deblurring With Graph Laplacian Regularization
    Kheradmand, Amin
    Milanfar, Peyman
    DIGITAL PHOTOGRAPHY XI, 2015, 9404
  • [25] A Neural Approach to Blind Motion Deblurring
    Chakrabarti, Ayan
    COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 221 - 235
  • [26] Perceptual quality evaluation for motion deblurring
    Hu, Bo
    Li, Leida
    Qian, Jiansheng
    IET COMPUTER VISION, 2018, 12 (06) : 796 - 805
  • [27] Efficient generative model for motion deblurring
    Xiang, Han
    Sang, Haiwei
    Sun, Lilei
    Zhao, Yong
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 491 - 494
  • [28] Fast and Robust linear motion deblurring
    Welk, Martin
    Raudaschl, Patrik
    Schwarzbauer, Thomas
    Erler, Martin
    Laeuter, Martin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (05) : 1221 - 1234
  • [29] Motion deblurring for optical character recognition
    Qi, XY
    Zhang, L
    Tan, CL
    EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 389 - 393
  • [30] CNN FOR LICENSE PLATE MOTION DEBLURRING
    Svoboda, Pavel
    Hradis, Michal
    Marsik, Lukas
    Zemcik, Pavel
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3832 - 3836