High-dimensional sign-constrained feature selection and grouping

被引:0
|
作者
Shanshan Qin
Hao Ding
Yuehua Wu
Feng Liu
机构
[1] York University,Department of Mathematics and Statistics
[2] University of Technology Sydney,Australian Artificial Intelligence Institute
关键词
Difference convex programming; Feature grouping; Feature selection; High-dimensional; Non-negative;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a non-negative feature selection/feature grouping (nnFSG) method for general sign-constrained high-dimensional regression problems that allows regression coefficients to be disjointly homogeneous, with sparsity as a special case. To solve the resulting non-convex optimization problem, we provide an algorithm that incorporates the difference of convex programming, augmented Lagrange and coordinate descent methods. Furthermore, we show that the aforementioned nnFSG method recovers the oracle estimate consistently, and that the mean-squared errors are bounded. Additionally, we examine the performance of our method using finite sample simulations and applying it to a real protein mass spectrum dataset.
引用
收藏
页码:787 / 819
页数:32
相关论文
共 50 条
  • [31] Feature Selection for High-Dimensional Data: The Issue of Stability
    Pes, Barbara
    [J]. 2017 IEEE 26TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES - INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2017, : 170 - 175
  • [32] A hybrid feature selection method for high-dimensional data
    Taheri, Nooshin
    Nezamabadi-pour, Hossein
    [J]. 2014 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2014, : 141 - 145
  • [33] Hybrid Feature Selection for High-Dimensional Manufacturing Data
    Sun, Yajuan
    Yu, Jianlin
    Li, Xiang
    Wu, Ji Yan
    Lu, Wen Feng
    [J]. 2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,
  • [34] An adaptive pyramid PSO for high-dimensional feature selection
    Jin, Xiao
    Wei, Bo
    Deng, Li
    Yang, Shanshan
    Zheng, Junbao
    Wang, Feng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [35] A hybrid feature selection scheme for high-dimensional data
    Ganjei, Mohammad Ahmadi
    Boostani, Reza
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
  • [36] Preconditioning for feature selection and regression in high-dimensional problems'
    Paul, Debashis
    Bair, Eric
    Hastie, Trevor
    Tibshirani, Robert
    [J]. ANNALS OF STATISTICS, 2008, 36 (04): : 1595 - 1618
  • [37] On the scalability of feature selection methods on high-dimensional data
    Bolon-Canedo, V.
    Rego-Fernandez, D.
    Peteiro-Barral, D.
    Alonso-Betanzos, A.
    Guijarro-Berdinas, B.
    Sanchez-Marono, N.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 56 (02) : 395 - 442
  • [38] Efficient Learning and Feature Selection in High-Dimensional Regression
    Ting, Jo-Anne
    D'Souza, Aaron
    Vijayakumar, Sethu
    Schaal, Stefan
    [J]. NEURAL COMPUTATION, 2010, 22 (04) : 831 - 886
  • [39] Evaluating Feature Selection Robustness on High-Dimensional Data
    Pes, Barbara
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 235 - 247
  • [40] Feature selection for classifying high-dimensional numerical data
    Wu, YM
    Zhang, AD
    [J]. PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 251 - 258