Hybrid Feature Selection for High-Dimensional Manufacturing Data

被引:2
|
作者
Sun, Yajuan [1 ]
Yu, Jianlin [2 ]
Li, Xiang [1 ]
Wu, Ji Yan [2 ]
Lu, Wen Feng [2 ]
机构
[1] A STAR Singapore Inst Mfg Technol, 2 Fusionopolis Way,08-04 Innovis, Singapore 138634, Singapore
[2] Natl Univ Singapore, Dept Mech Engn, Block EA, Singapore 117575, Singapore
关键词
Feature selection; Wrapper Method; High-Dimensional Manufacturing Data; MUTUAL INFORMATION; RELIEFF;
D O I
10.1109/ETFA45728.2021.9613547
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In manufacturing environment, hundreds of input parameters are related to product quality. To build an accurate machine learning model for quality prediction, it is necessary to find major input parameters which have a big influence in quality prediction. The procedure of identifying major factors out of original high-dimensional input parameters is called to be feature selection. This paper proposes a hybrid method for feature selection, which effectively reduces the searching space by leveraging feature subset chosen by Fast Correlation Based Filter (FCBF) and Relief-based feature selection. The computational complexity is proved to be quadratic in feature number, while most of the existing methods suffer from exponential computation complexity. This improvement is crucial especially when we deal with high-dimensional input parameters because it dramatically reduces the computational time. Further, the proposed method outperforms in prediction accuracy as well when it compares with the benchmarking method. It has been demonstrated by the implementation of our method into real-world manufacturing data sets and open source benchmarking data set.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A hybrid feature selection method for high-dimensional data
    Taheri, Nooshin
    Nezamabadi-pour, Hossein
    [J]. 2014 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2014, : 141 - 145
  • [2] A hybrid feature selection scheme for high-dimensional data
    Ganjei, Mohammad Ahmadi
    Boostani, Reza
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
  • [3] Hybrid fast unsupervised feature selection for high-dimensional data
    Manbari, Zhaleh
    AkhlaghianTab, Fardin
    Salavati, Chiman
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 124 : 97 - 118
  • [4] Feature selection for high-dimensional data
    Destrero A.
    Mosci S.
    De Mol C.
    Verri A.
    Odone F.
    [J]. Computational Management Science, 2009, 6 (1) : 25 - 40
  • [5] Feature selection for high-dimensional data
    Bolón-Canedo V.
    Sánchez-Maroño N.
    Alonso-Betanzos A.
    [J]. Progress in Artificial Intelligence, 2016, 5 (2) : 65 - 75
  • [6] FEATURE SELECTION FOR HIGH-DIMENSIONAL DATA ANALYSIS
    Verleysen, Michel
    [J]. NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : IS23 - IS25
  • [7] Feature selection for high-dimensional imbalanced data
    Yin, Liuzhi
    Ge, Yong
    Xiao, Keli
    Wang, Xuehua
    Quan, Xiaojun
    [J]. NEUROCOMPUTING, 2013, 105 : 3 - 11
  • [8] Feature selection for high-dimensional data in astronomy
    Zheng, Hongwen
    Zhang, Yanxia
    [J]. ADVANCES IN SPACE RESEARCH, 2008, 41 (12) : 1960 - 1964
  • [9] A filter feature selection for high-dimensional data
    Janane, Fatima Zahra
    Ouaderhman, Tayeb
    Chamlal, Hasna
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2023, 17
  • [10] Feature Selection with High-Dimensional Imbalanced Data
    Van Hulse, Jason
    Khoshgoftaar, Taghi M.
    Napolitano, Amri
    Wald, Randall
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 507 - 514