We present a new “integral =\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document} series” type identity of multiple zeta values, and show that this is equivalent in a suitable sense to the fundamental theorem of regularization. We conjecture that this identity is enough to describe all linear relations of multiple zeta values over Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Q}$$\end{document}. We also establish the regularization theorem for multiple zeta-star values, which too is equivalent to our new identity. A connection to Kawashima’s relation is discussed as well.
机构:
CUNY, Dept Math & Comp Sci, Bronx Community Coll, 2155 Univ Ave, Bronx, NY 10453 USACUNY, Dept Math & Comp Sci, Bronx Community Coll, 2155 Univ Ave, Bronx, NY 10453 USA
机构:
Rikkyo Univ, Dept Math, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, JapanRikkyo Univ, Dept Math, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan