共 50 条
A new integral–series identity of multiple zeta values and regularizations
被引:0
|作者:
Masanobu Kaneko
Shuji Yamamoto
机构:
[1] Kyushu University,Faculty of Mathematics
[2] Keio University,Keio Institute of Pure and Applied Sciences (KiPAS), Graduate School of Science and Technology
来源:
关键词:
Multiple zeta values;
Multiple zeta-star values;
Regularized double shuffle relation;
Kawashima’s relation;
11M32;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We present a new “integral =\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document} series” type identity of multiple zeta values, and show that this is equivalent in a suitable sense to the fundamental theorem of regularization. We conjecture that this identity is enough to describe all linear relations of multiple zeta values over Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {Q}$$\end{document}. We also establish the regularization theorem for multiple zeta-star values, which too is equivalent to our new identity. A connection to Kawashima’s relation is discussed as well.
引用
收藏
页码:2499 / 2521
页数:22
相关论文