A new integral–series identity of multiple zeta values and regularizations

被引:0
|
作者
Masanobu Kaneko
Shuji Yamamoto
机构
[1] Kyushu University,Faculty of Mathematics
[2] Keio University,Keio Institute of Pure and Applied Sciences (KiPAS), Graduate School of Science and Technology
来源
Selecta Mathematica | 2018年 / 24卷
关键词
Multiple zeta values; Multiple zeta-star values; Regularized double shuffle relation; Kawashima’s relation; 11M32;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new “integral =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} series” type identity of multiple zeta values, and show that this is equivalent in a suitable sense to the fundamental theorem of regularization. We conjecture that this identity is enough to describe all linear relations of multiple zeta values over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}. We also establish the regularization theorem for multiple zeta-star values, which too is equivalent to our new identity. A connection to Kawashima’s relation is discussed as well.
引用
收藏
页码:2499 / 2521
页数:22
相关论文
共 50 条