Edge lifting and total domination in graphs

被引:0
|
作者
Wyatt J. Desormeaux
Teresa W. Haynes
Michael A. Henning
机构
[1] University of Johannesburg,Department of Mathematics
[2] East Tennessee State University,Department of Mathematics and Statistics
来源
关键词
Edge lifting; Edge splitting; Total domination;
D O I
暂无
中图分类号
学科分类号
摘要
Let u and v be vertices of a graph G, such that the distance between u and v is two and x is a common neighbor of u and v. We define the edge lift of uv off x as the process of removing edges ux and vx while adding the edge uv to G. In this paper, we investigate the effect that edge lifting has on the total domination number of a graph. Among other results, we show that there are no trees for which every possible edge lift decreases the total domination number and that there are no trees for which every possible edge lift leaves the total domination number unchanged. Trees for which every possible edge lift increases the total domination number are characterized.
引用
收藏
页码:47 / 59
页数:12
相关论文
共 50 条
  • [41] Minus Edge Domination in Graphs
    Zhao, Min
    Shan, Erfang
    ARS COMBINATORIA, 2009, 93 : 105 - 112
  • [42] On Minus Edge Domination in Graphs
    Xing, Hua-Ming
    Chen, Xin
    Gao, Xiao-Yu
    UTILITAS MATHEMATICA, 2010, 81 : 245 - 254
  • [43] FRACTIONAL EDGE DOMINATION IN GRAPHS
    Arumugam, S.
    Jerry, Sithara
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (02) : 359 - 370
  • [44] The arrow edge domination in graphs
    Abdlhusein, Mohammed A.
    Radhi, Suha J.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 591 - 597
  • [45] Edge Domination in Graphs of Cubes
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2002, 52 : 875 - 879
  • [46] Edge Roman Domination on Graphs
    Gerard J. Chang
    Sheng-Hua Chen
    Chun-Hung Liu
    Graphs and Combinatorics, 2016, 32 : 1731 - 1747
  • [47] Edge roman domination in graphs
    Pushpam, P. Roushini Leely
    Malini Mai, T.N.M.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2009, 69 : 175 - 182
  • [48] PERFECT EDGE DOMINATION IN GRAPHS
    Paspasan, Mohammad Nur S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 27 (02): : 173 - 181
  • [49] On edge domination numbers of graphs
    Xu, BG
    DISCRETE MATHEMATICS, 2005, 294 (03) : 311 - 316
  • [50] ON THE TOTAL DOMINATION NUMBEROF TOTAL GRAPHS
    Cabrera-Martinez, Abel
    Sanchez, Jose L.
    Sigarreta Almira, Jose M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 933 - 951