Thermocapillary-enhanced Melting of Different Phase-change Materials in Microgravity

被引:0
|
作者
Nathaly García-Acosta
Pablo Salgado Sánchez
Jaime Jiménez
Úrsula Martínez
Jose Miguel Ezquerro
机构
[1] E-USOC,
[2] Center for Computational Simulation,undefined
[3] Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio,undefined
[4] Universidad Politécnica de Madrid,undefined
来源
Microgravity Science and Technology | / 34卷
关键词
Phase change materials; Thermocapillary effect; Microgravity;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical analysis of the thermocapillary-driven melting of phase change materials (PCMs) in weightlessness is presented. The phase change is explored for different PCMs with moderate melting temperatures, due to their potential for thermal control in space applications. We consider three different alkanes — n-octadecane, n-nonadecane, and n-eicosane — and gallium. Results are discussed in terms of the dimensionless Stefan (Ste) and Marangoni (Ma) numbers, which quantify the importance of the latent heat and the thermocapillary effect during the phase change process, respectively, and the container aspect ratio Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document}. For alkanes, similar results are obtained with melting rate enhancements that depend on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document}. In short (deep) containers, the thermocapillary effect accelerates melting — with respect to the conduction-driven case — by a factor of as much as 4 depending on Ma, while in large (shallow) containers, this enhancement factor can take values up to 20. The best performance is featured by n-eicosane, followed closely by n-octadecane. For gallium, results differ substantially due to its high thermal diffusivity, leading to a significant reduction of the enhancement up to a value of approximately 1.2 at large Ma and Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Phase-change materials and rigidity
    Piarristeguy, Andrea
    Pradel, Annie
    Raty, Jean-Yves
    MRS BULLETIN, 2017, 42 (01) : 45 - 49
  • [32] The promise of phase-change materials
    Gholipour, Behrad
    SCIENCE, 2019, 366 (6462) : 186 - 187
  • [33] Phase-change materials and their applications
    Sepulveda, Nelson
    Cao, Yunqi
    JOURNAL OF APPLIED PHYSICS, 2025, 137 (13)
  • [34] A map for phase-change materials
    Dominic Lencer
    Martin Salinga
    Blazej Grabowski
    Tilmann Hickel
    Jörg Neugebauer
    Matthias Wuttig
    Nature Materials, 2008, 7 : 972 - 977
  • [35] Epitaxial phase-change materials
    Rodenbach, Peter
    Calarco, Raffaella
    Perumal, Karthick
    Katmis, Ferhat
    Hanke, Michael
    Proessdorf, Andre
    Braun, Wolfgang
    Giussani, Alessandro
    Trampert, Achim
    Riechert, Henning
    Fons, Paul
    Kolobov, Alexander V.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2012, 6 (11): : 415 - 417
  • [36] Thermocapillary convection modes and phase change heat transfer characteristics of three-dimensional metal foam composited phase change materials with different aspect ratios under microgravity
    Xu, Wenbin
    Huang, Zihao
    Zhuang, Yijie
    Feng, Jing-Chun
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 222
  • [37] Analytical solution of the melting process of phase-change materials in thermal energy storage system
    Zhang, Zhuqian
    Wang, Zichen
    He, Xiande
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 9739 - 9754
  • [38] Numerical Study on Melting Phase Change under Microgravity
    Xi Chen
    Guanqiu Hao
    Feng Yao
    Chengbin Zhang
    Microgravity Science and Technology, 2019, 31 : 793 - 803
  • [39] Numerical Study on Melting Phase Change under Microgravity
    Chen, Xi
    Hao, Guanqiu
    Yao, Feng
    Zhang, Chengbin
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2019, 31 (06) : 793 - 803
  • [40] Selection of melting-peak temperature of phase-change materials: influence of the building parameters
    Baudoin, Gilles
    van Moeseke, Geoffrey
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 2592 - 2599