Thermocapillary-enhanced Melting of Different Phase-change Materials in Microgravity

被引:0
|
作者
Nathaly García-Acosta
Pablo Salgado Sánchez
Jaime Jiménez
Úrsula Martínez
Jose Miguel Ezquerro
机构
[1] E-USOC,
[2] Center for Computational Simulation,undefined
[3] Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio,undefined
[4] Universidad Politécnica de Madrid,undefined
来源
Microgravity Science and Technology | / 34卷
关键词
Phase change materials; Thermocapillary effect; Microgravity;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical analysis of the thermocapillary-driven melting of phase change materials (PCMs) in weightlessness is presented. The phase change is explored for different PCMs with moderate melting temperatures, due to their potential for thermal control in space applications. We consider three different alkanes — n-octadecane, n-nonadecane, and n-eicosane — and gallium. Results are discussed in terms of the dimensionless Stefan (Ste) and Marangoni (Ma) numbers, which quantify the importance of the latent heat and the thermocapillary effect during the phase change process, respectively, and the container aspect ratio Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document}. For alkanes, similar results are obtained with melting rate enhancements that depend on Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document}. In short (deep) containers, the thermocapillary effect accelerates melting — with respect to the conduction-driven case — by a factor of as much as 4 depending on Ma, while in large (shallow) containers, this enhancement factor can take values up to 20. The best performance is featured by n-eicosane, followed closely by n-octadecane. For gallium, results differ substantially due to its high thermal diffusivity, leading to a significant reduction of the enhancement up to a value of approximately 1.2 at large Ma and Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] The Thermocapillary Effects in Phase Change Materials in Microgravity experiment: Design, preparation and execution of a parabolic flight experiment
    Ezquerro, J. M.
    Bello, A.
    Salgado Sanchez, P.
    Laveron-Simavilla, A.
    Lapuerta, V.
    ACTA ASTRONAUTICA, 2019, 162 : 185 - 196
  • [22] COUPLING OF MELTING-SOLIDIFICATION PHASE-CHANGE CONVECTION WITH FLOATING-ZONE CONVECTION UNDER MICROGRAVITY
    XIONG, B
    TANG, ZM
    HU, WR
    CHINESE PHYSICS, 1992, 12 (03): : 569 - 577
  • [23] An investigation of the electroconvection flow and solid extraction during melting of phase-change materials
    Hassan, Ahmed
    Cotton, James S.
    JOURNAL OF ELECTROSTATICS, 2024, 128
  • [24] ANALYSIS OF CONTACT MELTING OF PHASE-CHANGE MATERIALS INSIDE A HEATED RECTANGULAR CAPSULE
    CHEN, WZ
    CHENG, SM
    LUO, Z
    GU, WM
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 1995, 19 (04) : 337 - 345
  • [25] Analysis of Underwater Melting Process and Leakage Plugging Performance of Phase-Change Materials
    Zhang, Shenghang
    Tang, Lei
    Li, Fei
    Li, Po
    Sima, Yao
    Zhao, Song
    MATERIALS, 2024, 17 (11)
  • [26] Phase-change memory materials
    Kraft, Arno
    CHEMISTRY & INDUSTRY, 2022, 86 (01) : 43 - 43
  • [27] Phonons of Phase-Change Materials
    Gaspard, Jean-Pierre
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (09):
  • [28] A map for phase-change materials
    Lencer, Dominic
    Salinga, Martin
    Grabowski, Blazej
    Hickel, Tilmann
    Neugebauer, Joerg
    Wuttig, Matthias
    NATURE MATERIALS, 2008, 7 (12) : 972 - 977
  • [29] Phase-change materials and rigidity
    Andrea Piarristeguy
    Annie Pradel
    Jean-Yves Raty
    MRS Bulletin, 2017, 42 : 45 - 49
  • [30] Advances in phase-change materials
    Liu, Kai
    Tian, Zhiting
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (07)