Investigation of kinetics of phenyl radicals with ethyl formate in the gas phase using cavity ring-down spectroscopy and theoretical methodologies

被引:0
|
作者
Koushik Mondal
Rajakumar Balla
机构
[1] Indian Institute of Technology Madras,Department of Chemistry
关键词
Cavity ring-down spectroscopy; Gas-phase kinetics; Phenyl radical; Biodiesel; Thermochemistry; Branching ratio;
D O I
暂无
中图分类号
学科分类号
摘要
The gas-phase kinetics of phenyl radical (·C6H5) with ethyl formate (HCO2Et, EF) was investigated experimentally using ultrasensitive laser-based cavity ring-down spectroscopy (CRDS). Phenyl radicals were generated by photolyzing nitrosobenzene (C6H5NO) at 248 nm and thereby probed at 504.8 nm. The rate coefficients for the (phenyl radical + EF) reaction were investigated between the temperatures of 260 and 361 K and at a pressure of 61 Torr with nitrogen (N2) as diluent. The temperature-dependent Arrhenius expression for the test reaction was obtained as: kphenyl+EFExpt,260-361K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{k}}_{\mathrm{phenyl}+\mathrm{EF}}^{\mathrm{Expt}, 260-361\mathrm{K}}$$\end{document}=(1.20  ±  0.16) × 10–13 exp[−(435.6  ±  50.0)/T] cm3 molecule−1 s−1 and the rate coefficient at room temperature was measured out to be: kphenyl+EFExpt,298K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{k}}_{\mathrm{phenyl}+\mathrm{EF}}^{\mathrm{Expt},298\mathrm{K}}$$\end{document}=(4.54  ±  0.42) × 10–14 cm3 molecule−1 s−1. The effects of pressure and laser fluence on the kinetics of the test reaction were found to be negligible within the experimental uncertainties. To complement the experimental findings, kinetics for the reaction of phenyl radicals with EF was investigated theoretically using Canonical Variational Transition State Theory (CVT) with Small Curvature Tunnelling (SCT) at CCSD(T)/cc-pVDZ//B3LYP/6–31 + G(d,p) level of theory in the temperatures between 200 and 400 K. The theoretically calculated rate coefficients for the title reaction were expressed in the Arrhenius form as: kphenyl+EFTheory,200-400K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{k}}_{\mathrm{phenyl}+\mathrm{EF}}^{\mathrm{Theory},200-400\mathrm{K}}$$\end{document}= (1.48  ±  0.56) × 10–38 × T8.47 × exp[(2431.3  ±  322.0)/T] cm3 molecule−1 s−1 and the corresponding rate coefficient at room temperature was calculated to be: kphenyl+EFTheory,298K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{k}}_{\mathrm{phenyl}+\mathrm{EF}}^{\mathrm{Theory},298\mathrm{K}}$$\end{document}= 4.91 × 10–14 cm3 molecule−1 s−1. A very good agreement was observed between the experimentally measured and theoretically calculated rate coefficients at 298 K. Thermochemical parameters as well as branching ratios for the reaction of (phenyl radical + EF) are also discussed in this manuscript.
引用
收藏
页码:859 / 873
页数:14
相关论文
共 50 条
  • [41] Cavity ring-down spectroscopy of the phenyl radical in a pulsed discharge supersonic jet expansion
    Freel, K.
    Park, J.
    Lin, M. C.
    Heaven, Michael C.
    CHEMICAL PHYSICS LETTERS, 2011, 507 (4-6) : 216 - 220
  • [42] Trace gas detection with CW cavity ring-down laser absorption spectroscopy
    Yan, WB
    Dudek, J
    Lehmann, K
    Rabinowitz, P
    2000 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE AND WORKSHOP, 2000, : 203 - 206
  • [44] Doubly labeled water analysis using cavity ring-down spectroscopy
    Thorsen, Thomas
    Shriver, Timothy
    Racine, Natalie
    Richman, Bruce A.
    Schoeller, Dale A.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2011, 25 (01) : 3 - 8
  • [45] Cavity Ring-Down Spectroscopy for ultra sensitive trace gas analysis.
    Yan, WB
    Markowski, ML
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U111 - U111
  • [46] Theoretical investigation of optical heterodyne cavity ring down spectroscopy
    Cao Lin
    Wang Chun-Mei
    Chen Yang-Qin
    Yang Xiao-Hua
    ACTA PHYSICA SINICA, 2006, 55 (12) : 6354 - 6359
  • [47] Ultrasensitive detection in liquids using cavity ring-down spectroscopy.
    Bechtel, KL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U46 - U46
  • [48] Linear cavity tapered fiber sensor using amplified phase-shift cavity ring-down spectroscopy
    Ayaz, Rana M. Armaghan
    Uysalli, Yigit
    Morova, Berna
    Kiraz, Alper
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (06) : 1756 - 1762
  • [49] Kinetics of the cyclohexadienyl radical self-reaction and oxidation reaction using cavity ring-down spectroscopy
    Shiga, Yutaka
    Koshi, Mitsuo
    Tonokura, Kenichi
    CHEMICAL PHYSICS LETTERS, 2009, 470 (1-3) : 35 - 38
  • [50] Airborne measurement of peroxy radicals using chemical amplification coupled with cavity ring-down spectroscopy: the PeRCEAS instrument
    George, Midhun
    Hernandez, Maria Dolores Andres
    Nenakhov, Vladyslav
    Liu, Yangzhuoran
    Burrows, John Philip
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (05) : 2577 - 2600