Investigation of kinetics of phenyl radicals with ethyl formate in the gas phase using cavity ring-down spectroscopy and theoretical methodologies

被引:0
|
作者
Koushik Mondal
Rajakumar Balla
机构
[1] Indian Institute of Technology Madras,Department of Chemistry
关键词
Cavity ring-down spectroscopy; Gas-phase kinetics; Phenyl radical; Biodiesel; Thermochemistry; Branching ratio;
D O I
暂无
中图分类号
学科分类号
摘要
The gas-phase kinetics of phenyl radical (·C6H5) with ethyl formate (HCO2Et, EF) was investigated experimentally using ultrasensitive laser-based cavity ring-down spectroscopy (CRDS). Phenyl radicals were generated by photolyzing nitrosobenzene (C6H5NO) at 248 nm and thereby probed at 504.8 nm. The rate coefficients for the (phenyl radical + EF) reaction were investigated between the temperatures of 260 and 361 K and at a pressure of 61 Torr with nitrogen (N2) as diluent. The temperature-dependent Arrhenius expression for the test reaction was obtained as: kphenyl+EFExpt,260-361K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{k}}_{\mathrm{phenyl}+\mathrm{EF}}^{\mathrm{Expt}, 260-361\mathrm{K}}$$\end{document}=(1.20  ±  0.16) × 10–13 exp[−(435.6  ±  50.0)/T] cm3 molecule−1 s−1 and the rate coefficient at room temperature was measured out to be: kphenyl+EFExpt,298K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{k}}_{\mathrm{phenyl}+\mathrm{EF}}^{\mathrm{Expt},298\mathrm{K}}$$\end{document}=(4.54  ±  0.42) × 10–14 cm3 molecule−1 s−1. The effects of pressure and laser fluence on the kinetics of the test reaction were found to be negligible within the experimental uncertainties. To complement the experimental findings, kinetics for the reaction of phenyl radicals with EF was investigated theoretically using Canonical Variational Transition State Theory (CVT) with Small Curvature Tunnelling (SCT) at CCSD(T)/cc-pVDZ//B3LYP/6–31 + G(d,p) level of theory in the temperatures between 200 and 400 K. The theoretically calculated rate coefficients for the title reaction were expressed in the Arrhenius form as: kphenyl+EFTheory,200-400K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{k}}_{\mathrm{phenyl}+\mathrm{EF}}^{\mathrm{Theory},200-400\mathrm{K}}$$\end{document}= (1.48  ±  0.56) × 10–38 × T8.47 × exp[(2431.3  ±  322.0)/T] cm3 molecule−1 s−1 and the corresponding rate coefficient at room temperature was calculated to be: kphenyl+EFTheory,298K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{k}}_{\mathrm{phenyl}+\mathrm{EF}}^{\mathrm{Theory},298\mathrm{K}}$$\end{document}= 4.91 × 10–14 cm3 molecule−1 s−1. A very good agreement was observed between the experimentally measured and theoretically calculated rate coefficients at 298 K. Thermochemical parameters as well as branching ratios for the reaction of (phenyl radical + EF) are also discussed in this manuscript.
引用
收藏
页码:859 / 873
页数:14
相关论文
共 50 条
  • [31] Application of Kalman Filter in Gas Detection by Cavity Ring-Down Spectroscopy
    Li, De-hao
    Wang, Dan
    Li, Zhi-yan
    Chen, Hao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44 (10) : 2727 - 2732
  • [32] Trace gas analysis by diode laser cavity ring-down spectroscopy
    Yan, WB
    TEST AND MEASUREMENT APPLICATIONS OF OPTOELECTRONIC DEVICES, 2002, 4648 : 156 - 164
  • [33] Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy
    Waechter, Helen
    Litman, Jessica
    Cheung, Adrienne H.
    Barnes, Jack A.
    Loock, Hans-Peter
    SENSORS, 2010, 10 (03) : 1716 - 1742
  • [34] Spectroscopic and kinetic investigation of methylene amidogen by cavity ring-down spectroscopy
    Nizamov, B
    Dagdigian, PJ
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (13): : 2256 - 2263
  • [35] Cavity ring-down spectroscopy using telecom diode lasers
    Foeldes, Tomas
    Vegsoe, K.
    Cermak, P.
    Veis, P.
    Macko, P.
    16TH POLISH-SLOVAK-CZECH OPTICAL CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2008, 7141
  • [36] Trace gas analysis by diode laser cavity ring-down spectroscopy
    Yan, WB
    Krusen, C
    Optics, T
    Dudek, J
    Lehmann, K
    Rabinowitz, P
    2002 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE AND WORKSHOP: ADVANCING THE SCIENCE OF SEMICONDUCTOR MANUFACTURING EXCELLENCE, 2002, : 319 - 323
  • [37] Direct Observation of Tetrahydrofuranyl and Tetrahydropyranyl Peroxy Radicals via Cavity Ring-Down Spectroscopy
    Telfah, Hamzeh
    Reza, Md Asmaul
    Alam, Jahangir
    Paul, Anam C.
    Liu, Jinjun
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (16): : 4475 - 4480
  • [38] Measurement of OH Radicals in Dielectric Barrier Discharge Plasmas by Cavity Ring-Down Spectroscopy
    赵国利
    朱爱民
    吴家婷
    刘忠伟
    徐勇
    Plasma Science and Technology, 2010, (02) : 166 - 171
  • [39] Measurement of OH Radicals in Dielectric Barrier Discharge Plasmas by Cavity Ring-Down Spectroscopy
    Zhao Guoli
    Zhu Aimin
    Wu Jiating
    Liu Zhongwei
    Xu Yong
    PLASMA SCIENCE & TECHNOLOGY, 2010, 12 (02) : 166 - 171
  • [40] Measurement of OH Radicals in Dielectric Barrier Discharge Plasmas by Cavity Ring-Down Spectroscopy
    赵国利
    朱爱民
    吴家婷
    刘忠伟
    徐勇
    Plasma Science and Technology, 2010, 12 (02) : 166 - 171