Sub-Gaussian model of processes with heavy-tailed distributions applied to air permeabilities of fractured tuff

被引:0
|
作者
Monica Riva
Shlomo P. Neuman
Alberto Guadagnini
机构
[1] Politecnico di Milano,Dipartimento di Ingegneria Idraulica Ambientale, Infrastrutture Viarie e Rilevamento
[2] University of Arizona,Department of Hydrology and Water Resources
关键词
Air permeabilities; Fractured tuff; Heavy-tailed distributions; Parameter estimation; Nonlinear scaling; Power law;
D O I
暂无
中图分类号
学科分类号
摘要
Earth and environmental variables are commonly taken to have multivariate Gaussian or heavy-tailed distributions in space and/or time. This is based on the observation that univariate frequency distributions of corresponding samples appear to be Gaussian or heavy-tailed. Of particular interest to us is the well-documented but heretofore little noticed and unexplained phenomenon that whereas the frequency distribution of log permeability data often seems to be Gaussian, that of corresponding increments tends to exhibit heavy tails. The tails decay as powers of −\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} where 1 < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} < 2 is either constant or grows monotonically toward an asymptote with increasing separation distance or lag. We illustrate the latter phenomenon on 1-m scale log air permeabilities from pneumatic tests in 6 vertical and inclined boreholes completed in unsaturated fractured tuff near Superior, Arizona. We then show theoretically and demonstrate numerically, on synthetically generated signals, that whereas the case of constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} is consistent with a collection of samples from truncated sub-Gaussian fractional Lévy noise, a random field (or process) subordinated to truncated fractional Gaussian noise, the case of variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} is consistent with a collection of samples from truncated sub-Gaussian fractional Lévy motion (tfLm), a random field subordinated to truncated fractional Brownian motion. Whereas the first type of signal is relatively regular and characterized by Lévy index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document}, the second is highly irregular (punctuated by spurious spikes) and characterized by the asymptote of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} values associated with its increments. We describe a procedure to estimate the parameters of univariate distributions characterizing such signals and apply it to our log air permeability data. The latter are found to be consistent with a collection of samples from tfLm with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} slightly smaller than 2, which is easily confused with a Gaussian field (characterized by constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document} = 2). The irregular (spiky) nature of this signal is typical of observed fractured rock properties. We propose that distributions of earth and environmental variable be inferred jointly from measured values and their increments in a way that insures consistency between these two sets of data.
引用
收藏
页码:195 / 207
页数:12
相关论文
共 41 条
  • [21] A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions
    Rocío Maehara
    Heleno Bolfarine
    Filidor Vilca
    N. Balakrishnan
    Metrika, 2021, 84 : 1049 - 1080
  • [22] Extended Neyman smooth goodness-of-fit tests, applied to competing heavy-tailed distributions
    McCulloch, J. Huston
    Percy, E. Richard, Jr.
    JOURNAL OF ECONOMETRICS, 2013, 172 (02) : 275 - 282
  • [23] EM-estimation and modeling of heavy-tailed processes with the multivariate normal inverse Gaussian distribution
    Oigård, TA
    Hanssen, A
    Hansen, RE
    Godtliebsen, F
    SIGNAL PROCESSING, 2005, 85 (08) : 1655 - 1673
  • [24] Simultaneous sparse model selection and coefficient estimation for heavy-tailed autoregressive processes
    Sang, Hailin
    Sun, Yan
    STATISTICS, 2015, 49 (01) : 187 - 208
  • [25] Model-based clustering via new parsimonious mixtures of heavy-tailed distributions
    Salvatore D. Tomarchio
    Luca Bagnato
    Antonio Punzo
    AStA Advances in Statistical Analysis, 2022, 106 : 315 - 347
  • [26] A robust Birnbaum-Saunders regression model based on asymmetric heavy-tailed distributions
    Maehara, Rocio
    Bolfarine, Heleno
    Vilca, Filidor
    Balakrishnan, N.
    METRIKA, 2021, 84 (07) : 1049 - 1080
  • [27] Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions
    Wan, Wai-Yin
    Chan, Jennifer So-Kuen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 687 - 702
  • [28] Robust Bayesian inference for the censored mixture of experts model using heavy-tailed distributions
    Mirfarah, Elham
    Naderi, Mehrdad
    Lin, Tsung-, I
    Wang, Wan-Lun
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
  • [29] Bayesian inference in a heteroscedastic replicated measurement error model using heavy-tailed distributions
    Cao, Chunzheng
    Chen, Mengqian
    Zhu, Xiaoxin
    Jin, Shaobo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (15) : 2915 - 2928
  • [30] Model-based clustering via new parsimonious mixtures of heavy-tailed distributions
    Tomarchio, Salvatore D.
    Bagnato, Luca
    Punzo, Antonio
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2022, 106 (02) : 315 - 347