A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions

被引:0
|
作者
Rocío Maehara
Heleno Bolfarine
Filidor Vilca
N. Balakrishnan
机构
[1] Universidad del Pacífico,Departamento de Ingeniería
[2] Universidade Estadual de São Paulo,Departamento de Estatística
[3] Universidade Estadual de Campinas,Departamento de Estatística
[4] McMaster University,Department of Mathematics and Statistics
来源
Metrika | 2021年 / 84卷
关键词
Nonlinear regression models; Birnbaum–Saunders distribution; EM algorithm; Robust estimation; Skew-normal/independent distribution; Sinh-normal distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Skew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.
引用
收藏
页码:1049 / 1080
页数:31
相关论文
共 50 条
  • [1] A robust Birnbaum-Saunders regression model based on asymmetric heavy-tailed distributions
    Maehara, Rocio
    Bolfarine, Heleno
    Vilca, Filidor
    Balakrishnan, N.
    [J]. METRIKA, 2021, 84 (07) : 1049 - 1080
  • [2] ARFIS: An adaptive robust model for regression with heavy-tailed distribution
    Su, Meihong
    Zhang, Jifu
    Guo, Yaqing
    Wang, Wenjian
    [J]. INFORMATION SCIENCES, 2024, 686
  • [3] Robust Nonparametric Regression for Heavy-Tailed Data
    Gorji, Ferdos
    Aminghafari, Mina
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2020, 25 (03) : 277 - 291
  • [4] Robust Nonparametric Regression for Heavy-Tailed Data
    Ferdos Gorji
    Mina Aminghafari
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2020, 25 : 277 - 291
  • [5] A robust multivariate Birnbaum-Saunders regression model
    Romeiro, Renata G.
    Vilca, Filidor
    Balakrishnan, N.
    Zeller, Camila Borelli
    [J]. STATISTICS, 2020, 54 (05) : 1094 - 1123
  • [6] Influence diagnostics for Grubbs's model with asymmetric heavy-tailed distributions
    Zeller, Camila B.
    Lachos, Victor H.
    Labra, Filidor Vilca
    [J]. STATISTICAL PAPERS, 2014, 55 (03) : 671 - 690
  • [7] Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions
    Camila B. Zeller
    Victor H. Lachos
    Filidor Vilca Labra
    [J]. Statistical Papers, 2014, 55 : 671 - 690
  • [8] Nonlinear censored regression models with heavy-tailed distributions
    Garay, Aldo M.
    Lachos, Victor H.
    Lin, Tsung-I
    [J]. STATISTICS AND ITS INTERFACE, 2016, 9 (03) : 281 - 293
  • [9] l1 -regression with Heavy-tailed Distributions
    Zhang, Lijun
    Zhou, Zhi-Hua
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [10] A log-Birnbaum-Saunders regression model with asymmetric errors
    Lemonte, Artur J.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (12) : 1775 - 1787