Density results for subspace multiwindow Gabor systems in the rational case

被引:0
|
作者
Qiao Fang Lian
Hai Li Ma
机构
[1] Beijing Jiaotong University,Department of Mathematics
关键词
Multiwindow Gabor frames; Riesz bases; subspaces; Zak transform; density conditions; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}$$\end{document} be a periodic set in ℝ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document} be a subspace of L2(ℝ). This paper investigates the density problem for multiwindow Gabor systems in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document} for the case that the product of timefrequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document}. Under such conditions, we construct a multiwindow tight Gabor frame for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document} with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document}, and obtain the density condition for a multiwindow Gabor Riesz basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document}.
引用
收藏
页码:897 / 912
页数:15
相关论文
共 50 条