Density results for subspace multiwindow Gabor systems in the rational case

被引:0
|
作者
Qiao Fang Lian
Hai Li Ma
机构
[1] Beijing Jiaotong University,Department of Mathematics
关键词
Multiwindow Gabor frames; Riesz bases; subspaces; Zak transform; density conditions; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}$$\end{document} be a periodic set in ℝ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document} be a subspace of L2(ℝ). This paper investigates the density problem for multiwindow Gabor systems in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document} for the case that the product of timefrequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document}. Under such conditions, we construct a multiwindow tight Gabor frame for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document} with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document}, and obtain the density condition for a multiwindow Gabor Riesz basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 \left( \mathbb{S} \right)$$\end{document}.
引用
收藏
页码:897 / 912
页数:15
相关论文
共 50 条
  • [21] Density of Gabor Systems Via the Short Time Fourier Transform
    Andrew Ahn
    William Clark
    Shahaf Nitzan
    Joseph Sullivan
    [J]. Journal of Fourier Analysis and Applications, 2018, 24 : 699 - 718
  • [22] Constructing super Gabor frames:the rational time-frequency lattice case
    LI ZhongYan 1 & HAN DeGuang 2
    2 Department of Mathematics
    [J]. Science China Mathematics, 2010, 53 (12) : 3179 - 3186
  • [23] Constructing super Gabor frames: the rational time-frequency lattice case
    ZhongYan Li
    DeGuang Han
    [J]. Science China Mathematics, 2010, 53 : 3179 - 3186
  • [24] Constructing super Gabor frames: the rational time-frequency lattice case
    Li ZhongYan
    Han DeGuang
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3179 - 3186
  • [25] Density, overcompleteness, and localization of frames. II. Gabor systems
    Balan, Radu
    Casazza, Peter G.
    Heil, Christopher
    Landau, Zeph
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (03) : 309 - 344
  • [26] Beurling Density and Shift-Invariant Weighted Irregular Gabor Systems
    Gitta Kutyniok
    [J]. Sampling Theory in Signal and Image Processing, 2006, 5 (2): : 163 - 181
  • [27] Density, Overcompleteness, and Localization of Frames. II. Gabor Systems
    Radu Balan
    Peter G. Casazza
    Christopher Heil
    Zeph Landau
    [J]. Journal of Fourier Analysis and Applications, 2006, 12 : 307 - 344
  • [28] Global results on rational systems in the plane, part 1
    Camouzis, E.
    Ladas, G.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (08) : 975 - 1013
  • [29] Reproducing pairs and Gabor systems at critical density (vol 455, pg 1072, 2017)
    Balazs, Peter
    Speckbacher, Michael
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [30] Some boundedness results for systems of two rational difference equations
    Lugo, Gabriel
    Palladino, Frank J.
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (06): : 1058 - 1090