Density Results for Subspace Multiwindow Gabor Systems in the Rational Case

被引:0
|
作者
Qiao Fang LIAN [1 ]
Hai Li MA [1 ]
机构
[1] Department of Mathematics, Beijing Jiaotong University
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Multiwindow Gabor frames; Riesz bases; subspaces; Zak transform; density conditions;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let S be a periodic set in R and L2(S) be a subspace of L2 (R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time-frequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in L2(S). Under such conditions, we construct a multiwindow tight Gabor frame for L2(S) with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for L2(S), and obtain the density condition for a multiwindow Gabor Riesz basis for L2(S).
引用
收藏
页码:897 / 912
页数:16
相关论文
共 50 条
  • [1] Density Results for Subspace Multiwindow Gabor Systems in the Rational Case
    Lian, Qiao Fang
    Ma, Hai Li
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (05) : 897 - 912
  • [2] Density Results for Subspace Multiwindow Gabor Systems in the Rational Case
    Qiao Fang LIAN
    Hai Li MA
    [J]. Acta Mathematica Sinica., 2013, 29 (05) - 912
  • [3] Density results for subspace multiwindow Gabor systems in the rational case
    Qiao Fang Lian
    Hai Li Ma
    [J]. Acta Mathematica Sinica, English Series, 2013, 29 : 897 - 912
  • [4] Subspace mixed rational time-frequency multiwindow Gabor frames and their Gabor duals
    Yan Zhang
    Yun-Zhang Li
    [J]. Journal of Inequalities and Applications, 2018
  • [5] Subspace mixed rational time-frequency multiwindow Gabor frames and their Gabor duals
    Zhang, Yan
    Li, Yun-Zhang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [6] Discrete Subspace Multiwindow Gabor Frames and Their Duals
    Li, Yun-Zhang
    Zhang, Yan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [7] Compactly supported multiwindow dual Gabor frames of rational sampling density
    Jang, Sumi
    Jeong, Byeongseon
    Kim, Hong Oh
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (01) : 159 - 186
  • [8] Compactly supported multiwindow dual Gabor frames of rational sampling density
    Sumi Jang
    Byeongseon Jeong
    Hong Oh Kim
    [J]. Advances in Computational Mathematics, 2013, 38 : 159 - 186
  • [9] Gabor frames with rational density
    Lyubarskii, Yurii
    Nes, Preben Graberg
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (03) : 488 - 494
  • [10] Time-domain characterization of multiwindow Gabor systems on discrete periodic sets
    Qiao-Fang Lian
    Jing Gong
    Ming-Hou You
    [J]. Indian Journal of Pure and Applied Mathematics, 2013, 44 : 47 - 76