Lefschetz theorem for holomorphic one-forms on weakly 1-complete manifolds

被引:0
|
作者
Chen Zhou
机构
[1] Sun Yat-Sen University,
来源
Mathematische Annalen | 2022年 / 382卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a holomorphic one-form ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\xi }$$\end{document} on a weakly 1-complete manifold X with certain properties, we will discuss the connectivity of the pair (X^,F-1(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hat{X},F^{-1}(z))$$\end{document}, where π:X^→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :\hat{X} \rightarrow X$$\end{document} is a covering map and F is a holomorphic function on X^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{X}$$\end{document} such that dF=π∗ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dF=\pi ^*{\xi }$$\end{document}. We will also discuss the criteria about when such a manifold X admits a proper holomorphic mapping onto a Riemann surface.
引用
收藏
页码:761 / 782
页数:21
相关论文
共 50 条