BOUNDED HARMONIC 1-FORMS ON COMPLETE MANIFOLDS

被引:0
|
作者
Cocos, M. [1 ]
机构
[1] Weber State Univ, Dept Math, Ogden, UT 84408 USA
关键词
COMPLETE RIEMANNIAN-MANIFOLDS; FORMS; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present some results concerning bounded harmonic 1-forms on manifolds of compact type. As a corollary we obtain a rigidity result for the first cohomology group of locally isometric Riemannian manifolds.
引用
收藏
页码:1459 / 1465
页数:7
相关论文
共 50 条
  • [1] p-harmonic 1-forms on complete manifolds
    Chang, Liang-Chu
    Guo, Cheng-Lin
    Sung, Chiung-Jue Anna
    ARCHIV DER MATHEMATIK, 2010, 94 (02) : 183 - 192
  • [2] p-harmonic 1-forms on complete manifolds
    Liang-Chu Chang
    Cheng-Lin Guo
    Chiung-Jue Anna Sung
    Archiv der Mathematik, 2010, 94 : 183 - 192
  • [3] L~2-harmonic 1-forms on Complete Manifolds
    Zhu Peng
    Zhou Jiu-ru
    CommunicationsinMathematicalResearch, 2017, 33 (01) : 1 - 7
  • [4] A note on p-harmonic 1-forms on complete manifolds
    Zhang, X
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (03): : 376 - 384
  • [5] Harmonic 1-Forms on Compact f-Manifolds
    Di Terlizzi, Luigia
    Konderak, Jerzy J.
    Wolak, Robert A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2007, 4 (03) : 251 - 261
  • [6] Harmonic 1-Forms on Compact f-Manifolds
    Luigia Di Terlizzi
    Jerzy J. Konderak
    Robert A. Wolak
    Mediterranean Journal of Mathematics, 2007, 4 : 251 - 261
  • [7] Lp harmonic 1-forms on conformally flat Riemannian manifolds
    Li, Jing
    Feng, Shuxiang
    Zhao, Peibiao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01):
  • [8] Harmonic and holomorphic 1-forms on compact balanced Hermitian manifolds
    Ganchev, G
    Ivanov, S
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (01) : 79 - 93
  • [9] WEIGHTED L2 HARMONIC 1-FORMS AND THE TOPOLOGY AT INFINITY OF COMPLETE NONCOMPACT WEIGHTED MANIFOLDS
    Seo, Keomk Yo
    Yun, Gabjin
    TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (04) : 509 - 526
  • [10] A class of 3-dimensional manifolds with bounded first eigenvalue on 1-forms
    Gentile, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (09) : 2755 - 2758