Minimum Clique Partition in Unit Disk Graphs

被引:0
|
作者
Adrian Dumitrescu
János Pach
机构
[1] University of Wisconsin–Milwaukee,
[2] Ecole Polytechnique Fédérale de Lausanne and City College,undefined
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Unit disk graph; Clique partition;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting points at distance at most 1. MCP in UDGs is known to be NP-hard and several constant factor approximations are known, including a recent PTAS. We present two improved approximation algorithms for MCP in UDGs with a realization: (I) A polynomial time approximation scheme (PTAS) running in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O(1/\varepsilon^2)}}$$\end{document}. This improves on a previous PTAS with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n^{O(1/\varepsilon^4)}}$$\end{document} running time by Pirwani and Salavatipour (arXiv:0904.2203v1, 2009). (II) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves on a ratio 3 algorithm with O(n2) running time by Cerioli et al. (Electron. Notes Discret. Math. 18:73–79, 2004).
引用
收藏
页码:399 / 411
页数:12
相关论文
共 50 条
  • [41] Compact structure for sparse undirected graphs based on a clique graph partition
    Glaria, Felipe
    Hernandez, Cecilia
    Ladra, Susana
    Navarro, Gonzalo
    Salinas, Lilian
    INFORMATION SCIENCES, 2021, 544 (544) : 485 - 499
  • [42] Edge Clique Partition of K4-Free and Planar Graphs
    Fleischer, Rudolf
    Wu, Xiaotian
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 84 - 95
  • [43] Approximation Algorithm for Minimum Weight Fault-Tolerant Virtual Backbone in Unit Disk Graphs
    Shi, Yishuo
    Zhang, Zhao
    Mo, Yuchang
    Du, Ding-Zhu
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2017, 25 (02) : 925 - 933
  • [44] A new bound on maximum independent set and minimum connected dominating set in unit disk graphs
    Yingfan L. Du
    Hongmin W. Du
    Journal of Combinatorial Optimization, 2015, 30 : 1173 - 1179
  • [45] PTAS for the minimum k-path connected vertex cover problem in unit disk graphs
    Liu, Xianliang
    Lu, Hongliang
    Wang, Wei
    Wu, Weili
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (02) : 449 - 458
  • [46] PTAS for the minimum k-path connected vertex cover problem in unit disk graphs
    Xianliang Liu
    Hongliang Lu
    Wei Wang
    Weili Wu
    Journal of Global Optimization, 2013, 56 : 449 - 458
  • [47] A new bound on maximum independent set and minimum connected dominating set in unit disk graphs
    Du, Yingfan L.
    Du, Hongmin W.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (04) : 1173 - 1179
  • [48] A (4+ε)-Approximation for the Minimum-Weight Dominating Set Problem in Unit Disk Graphs
    Erlebach, Thomas
    Mihalak, Matus
    APPROXIMATION AND ONLINE ALGORITHMS, 2010, 5893 : 135 - +
  • [49] Reduced Clique Graphs: A Correction to "Chordal Graphs and Their Clique Graphs"
    Mayhew, Dillon
    Probert, Andrew
    GRAPHS AND COMBINATORICS, 2024, 40 (03)
  • [50] SIMPLE HEURISTICS FOR UNIT DISK GRAPHS
    MARATHE, MV
    BREU, H
    HUNT, HB
    RAVI, SS
    ROSENKRANTZ, DJ
    NETWORKS, 1995, 25 (02) : 59 - 68